October 26, 2018

Submitted via the Federal eRulemaking portal: http://www.regulations.gov

The Honorable Andrew Wheeler
Acting Administrator
U.S. Environmental Protection Agency (EPA)
1200 Pennsylvania Avenue, NW
Washington, D.C. 20460

The Honorable Heidi R. King
Deputy Administrator
National Highway Traffic Safety Administration (NHTSA)
U.S. Department of Transportation
1200 New Jersey Avenue, SE
Washington, DC 20590

Dear Acting Administrator Wheeler and Deputy Administrator King:

The Renewable Fuels Association (“RFA”) appreciates the opportunity to provide the attached comments relating to the Environmental Protection Agency (EPA) and the Department of Transportation’s Proposed Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021-2026 Passenger Cars and Light Trucks.

The RFA is the leading trade association representing the U.S. fuel ethanol industry. Its mission is to advance the development, production, and use of fuel ethanol by strengthening America’s ethanol industry and raising awareness about the benefits of renewable fuels.

RFA strongly believes vehicles and fuels must be considered together as integrated systems. As EPA has recognized in the past, a “systems approach enables emission reductions that are both technologically feasible and cost effective beyond what would be possible looking at vehicle and fuel standards in isolation.” Because ethanol-based high-octane low-carbon (HOLC) fuel blends would enable cost-effective gains in fuel economy and carbon dioxide reductions, the agencies should take steps to support HOLC fuels in the final SAFE rule, as described in the attached comments.

EPA should support the introduction of high-octane fuels by promulgating a minimum octane standard under Section 211(c) of the Clean Air Act. A minimum octane standard
would enable broad commercialization of higher-compression engines and other advanced internal combustion engine technologies that would facilitate compliance with future CAFE and GHG standards. As discussed in RFA’s Midterm Evaluation comments, the technical literature shows that ethanol-based HOLC fuel could improve vehicle efficiency and reduce carbon dioxide emissions by 4-10% in optimized high-compression engines. Moreover, the available evidence demonstrates that increased engine compression ratios—enabled by high-octane fuel—offer the most economical means for manufacturers to increase fuel economy and reduce carbon dioxide emissions from light-duty vehicles.

It is important to note that EPA has the authority to control gasoline octane because currently available low-octane gasoline contributes to air pollution and endangers public health. EPA has already found that carbon dioxide emissions from motor vehicles may reasonably be anticipated to endanger public health and welfare under section 202(a) of the Clean Air Act. And, as the proposed SAFE rule explains, motor vehicle carbon dioxide emissions are indistinguishable from gasoline carbon emissions. Based on research by automakers, universities, and government laboratories, RFA believes the ideal minimum octane level would be 98-100 RON.

EPA should support the commercialization of high-octane fuel by removing regulatory barriers to midlevel ethanol blends like E25 and E30. The President’s decision to end the senseless restrictions that prevent higher ethanol blends (e.g., E15) from being sold year-round is a step in the right direction, but more must be done to enable HOLC fuels. EPA should fix the erroneous fuel economy formula and approve a high-octane low-carbon midlevel ethanol certification fuel.

Specifically, EPA should fix the “R-factor” in the final SAFE rule or before then. When it does so, EPA should reiterate to auto manufacturers its outstanding invitation to request a HOLC certification fuel. In addition, the Department of Transportation (DOT) and EPA should account for the energy conservation and renewable benefits of HOLC fuel in calculating compliance. Finally, the DOT and EPA should harmonize the national program by restoring the Flex-fuel vehicle credits intended by Congress.

In summary, HOLC fuel would enable cost-effective increases in vehicle efficiency, reduce CO₂ emissions, and improve air quality. A 98-100 RON HOLC fuel would facilitate compliance with fuel economy and GHG standards in 2021-2026 and beyond. The agencies should support this transition by developing a minimum octane standard, coupled with the removal of regulatory barriers that impede the widespread introduction and sale of ethanol-based HOLC blends.

Sincerely,

Geoff Cooper
President & CEO
COMMENTS OF THE RENEWABLE FUELS ASSOCIATION

On the National Highway Traffic Safety Administration’s and U.S. Environmental Protection Agency’s Proposed

SAFER AFFORDABLE FUEL-EFFICIENT (SAFE) VEHICLES RULE FOR
MODEL YEARS 2021-2026
PASSENGER CARS AND LIGHT TRUCKS

I. INTRODUCTION

The Renewable Fuels Association (“RFA”) appreciates the opportunity to provide comments relevant to the Environmental Protection Agency and the Department of Transportation’s Proposed Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021-2026 Passenger Cars and Light Trucks. RFA’s mission is to advance the development, production, and use of fuel ethanol by strengthening America’s ethanol industry and raising awareness about the benefits of renewable fuels.

RFA welcomes the agencies’ request for comment on the important topic of high-octane fuel. Vehicles and fuels must be considered together as an integrated system. As EPA has recognized in the past, a “systems approach enables emission reductions that are both technologically feasible and cost effective beyond what would be possible looking at vehicle and fuel standards in isolation.” Because high-octane low-carbon midlevel ethanol (HOLC) blends would enable cost-effective gains in fuel economy and carbon dioxide reductions, the agencies should take steps to support HOLC blends in the final SAFE rule, as outlined below.

Part I of these comments explains why a minimum octane standard that is attained with HOLC blends is cost-effective for automakers, beneficial for

consumers, and consistent with Title II of the Clean Air Act. Part II of these comments outlines regulatory barriers that EPA must remove to enable HOLC blends to compete in the market for gasoline octane-enhancers.

II. **EPA SHOULD SUPPORT HIGH-OCTANE FUEL BY PROMULGATING A MINIMUM OCTANE STANDARD UNDER SECTION 211(C) OF THE CLEAN AIR ACT.**

 a. **A Minimum Octane Standard Would Enable High-Compression Engines, Facilitating Compliance with CAFE and GHG Standards.**

 The proposed SAFE rule requests comment on the pros and cons of “increasing the available octane levels and, potentially, eliminating today’s lower octane fuel blends,” by requiring that “today’s premium grade” gasoline become “the base grade available."3 The agencies correctly suggest higher octane fuel “could enable low cost design changes that would improve fuel economy and CO₂.”4 Relatively, EPA “requests comment on if and how EPA could support the production and use of higher octane gasoline consistent with Title II of the Clean Air Act.”5 In connection with this request, EPA notes that [h]igher octane gasoline could provide manufacturers with more flexibility to meet more stringent standards by enabling opportunities for use of lower CO₂ emitting technologies (e.g., higher compression ratio engines, improved turbocharging, optimized engine combustion).”6 This is consistent with EPA’s statement in the 2014 Tier 3 Rule, in which EPA noted that a HOLC fuel such as E30 (gasoline blended with 30% ethanol) could allow manufacturers “to raise compression ratios to improve vehicle efficiency as a step toward complying with the 2017 and later light-duty greenhouse gas and CAFE standards.”7

 EPA is correct. HOLC fuel would enable gains in vehicle efficiency and reduced tailpipe carbon dioxide emissions beyond what is possible with current regular grade gasoline. As discussed in more detail in RFA’s Midterm Evaluation

3 *Id.* at 43,041
4 *Id.*
5 *Id.* at 43,464.
6 *Id.*
7 Tier 3 Rule, 79 Fed. Reg. at 23,528.
comments on EPA’s reconsideration of its Final Determination, the technical engineering literature shows that HOLC fuel could improve vehicle efficiency and reduce carbon dioxide emissions by 4-10% in optimized high-compression engines. These significant projected efficiency gains are consistent with the National Research Council’s finding that high-octane gasoline would significantly reduce fuel consumption in optimized engines with higher compression ratios. A detailed examination of the potential contribution of HOLC blends to greater vehicle efficiency can be found in the attached final report by Ricardo, Inc. It concludes that “splash blending ethanol [into gasoline] is a highly effective means of raising the octane rating of gasoline and enabling low-cost efficiencies and reduced emissions in modern spark-ignition engines.”

High-octane fuel is the most cost-effective way for vehicle manufacturers to comply with the proposed standards. The available evidence demonstrates that increased engine compression ratios—enabled by high-octane fuel—offer the most economical means for manufacturers to increase fuel economy and reduce carbon dioxide emissions from light-duty vehicles. High-octane fuel paired with high-compression ratio engines would allow manufacturers to increase vehicle fuel economy and reduce carbon dioxide emissions without sacrificing other performance attributes, like horsepower and acceleration. Because it would facilitate compliance with CAFE and GHG standards, a minimum octane standard would serve the Administration’s interest in reducing regulatory compliance costs.

9 Nat’l Research Council, Cost, Effectiveness and Deployment of Fuel Economy Technologies for Light-Duty Vehicles 85 (2015) (“Increasing octane from 87 AKI (91 RON) of regular grade gasoline to 91 AKI (95 RON) has the potential to provide 3 to 5 percent reduction in fuel consumption for naturally aspirated engines if compression ratio is increased by 2 ratios from today’s typical level, and possibly even greater reductions in fuel consumption for turbocharged engines by allowing operation at higher boost pressures for further downsizing.”).
11 Id. at 35.
12 RFA MTE Comments, supra note 8, at 5.
Auto executives and auto industry experts have endorsed high-octane fuel as the best pathway to comply with future vehicle fuel economy and greenhouse gas standards. And that is why the National Research Council has recommended that the agencies “investigate the . . . effectiveness of increasing the minimum octane level, and, if it is effective, determine how to implement an increase in the minimum octane level so that manufacturers would broadly offer engines with significantly increased compression ratios for further reductions in fuel consumption.”

Auto manufacturers cannot introduce high-compression ratio engines on their own. As the National Research Council argued, “gasoline with a higher minimum octane level would need to be widely available before manufacturers could broadly offer engines with significantly increased compression ratios.” To remedy this coordination problem and support a timely transition to high-octane fuel and high-compression engines, EPA should require fuel manufacturers to gradually phase out today’s regular grade gasoline and replace it with a fuel-neutral higher-octane standard such as 98-100 RON. The auto industry and petroleum refiners already support the idea of legislation to raise gasoline octane to 95 RON. But no legislation is necessary to enable more efficient vehicles: Congress has already provided EPA with authority to control octane levels under section 211(c) of the Clean Air Act.

The success of a minimum octane standard depends critically on the availability of cost-effective octane enhancers, like ethanol.

Ethanol is, simply put, the most cost-effective octane enhancer currently available in the marketplace.

14 RFA MTE Comments, supra note 8, at 7–8.
15 Nat’l Research Council, supra note 9, at 84.
16 Id.
17 A RON standard is preferable to a standard based on the current Anti-Knock Index (AKI) because for a variety of reasons, RON is a more accurate measure of a fuel’s resistance to pre-ignition in today’s vehicle engines. See Thomas G. Leone et al., The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency, 49 Envtl. Sci. & Tech. 10,778, 10,779–780 (2015) (explaining why RON is more accurate in today’s vehicles).
Ethanol’s high-octane blending value is unmatched by any other fuel component available in the market. Ethanol averages an octane blending value of 114 Anti-Knock Index (AKI) in today’s gasoline market, or 119 AKI when considering only the octane it adds to regular gasoline. In RON rating terms, ethanol’s octane advantage is even greater, with an octane blending value ranging from 115 to 135 RON.

Ethanol is also the most cost-effective octane enhancer. Ethanol is priced lower than other high-octane alternatives like reformate (aromatics), alkylate, or MTBE. Ethanol is even usually priced below regular gasoline blendstock. This means that simply adding ethanol to gasoline could reduce fuel prices while increasing octane. As a result, HOLC blends could be price-competitive with regular gasoline, and would even save consumers money. Increasing engine compression ratio costs less than the consumer fuel savings that would result, so fuel consumers would be better off by using HOLC blends in optimized vehicles.

By contrast, 91-93 AKI premium E10 is sold at a 50-cent per gallon premium in today’s gasoline market, so transitioning to a minimum octane standard with this fuel would impose significant negative costs on fuel consumers and would likely draw significant backlash. One of the factors contributing to premium gasoline’s high price tag is the increasing cost of petroleum-based octane additives. More and more of the U.S. fuel pool is derived from light, tight crude oil from fracking, which has a lower octane value than Saudi crude. Creating octane additives from such petroleum requires refiners to run reformers at high intensity—a costly and fuel-

19 Id. at 10–11.
21 RFA 2018 Outlook, supra note 18, at 11.
22 Id. at 9.
24 Id. at 6.
intensive process. HOLC blends are likely the only economically efficient way to raise octane in today’s gasoline market.

HOLC blends would also minimize refinery compliance costs and maximize the carbon dioxide emission reductions of a minimum octane standard. Refinery modeling has shown that midlevel ethanol blends always minimize refiners’ cost of complying with a minimum octane standard, regardless of what minimum octane standard EPA decides to require. Blenders could produce HOLC fuel by simply splashing more ethanol into current regular gasoline blendstocks at the terminal rack, requiring no change in refinery operations and imposing at most negligible compliance costs. In addition, refinery modeling shows that HOLC blends could result in much lower lifecycle greenhouse gas emissions, maximizing carbon dioxide reductions. And by diluting gasoline aromatics, HOLC blends would reduce deadly particle pollution.

In short, HOLC blends are the most cost-effective means to transition to higher octane fuel and the more efficient high-compression internal combustion engines that fuel would enable.

c. EPA Has Authority to Control Gasoline Octane Because Low-Octane Gasoline Contributes to Air Pollution that Endangers Public Health or Welfare.

EPA has authority to control or prohibit existing fuels under the Clean Air Act (CAA). Under CAA § 211(c)(1), EPA may “by regulation, control or prohibit the manufacture, introduction into commerce, offering for sale, or sale of any fuel or fuel additive for use in a motor vehicle” if

“in the judgment of the Administrator any fuel or fuel additive or any emission product of such fuel or fuel additive causes, or contributes, to air pollution . . . that may reasonably be anticipated to endanger the public health or welfare.”

26 Hirshfeld & Kolb, supra note 20, at 11,067–68, Figure 1 & Table 2.
27 See id. at 11,067–68, 11,070.
28 RFA MTE Comments, supra note 8, at 4–5; see also Addendum A, at 30–31 (reviewing the literature).
29 Id. at 6–7 (explaining how aromatics used to increase gasoline octane contribute to particle pollution).
30 42 U.S.C. § 7545(c).
EPA can regulate gasoline octane levels under CAA § 211(c)(1) because gasoline combustion produces CO$_2$, which endangers public health or welfare. EPA may control this endangerment by requiring the sale of gasoline with a higher-octane rating that produces less CO$_2$.

EPA has already found that carbon dioxide emissions from motor vehicles may reasonably be anticipated to endanger public health and welfare under section 202(a) of the Clean Air Act.3 And, as the proposed SAFE rule explains, motor vehicle carbon dioxide emissions are indistinguishable from gasoline carbon emissions: both are the same phenomenon, looked at from different sides.3 Thus, if motor vehicle carbon dioxide emissions may reasonably be anticipated to endanger public health or welfare, then, a fortiori, the fuel combusted by motor vehicles also endangers the public health or welfare. Thus, section 211(c)(1)’s cause-or-contribute requirement has already been satisfied. An EPA finding that existing gasoline may endanger public health or welfare under 211(c) would therefore break no new ground under the Clean Air Act.

Once EPA has found that carbon dioxide emissions from gasoline combustion endanger the public health or welfare, EPA would have broad discretion to promulgate reasonable regulations to “control or prohibit” the manufacture or sale of low-octane gasoline.33 Regulations that “control” gasoline by requiring higher octane ratings are a reasonable, cost-effective way to reduce carbon dioxide emissions from gasoline combustion.34 EPA could “control” gasoline octane by prohibiting the sale of low-octane gasoline or by requiring fuel manufacturers or fuel retailers to affirmatively market an alternative high-RON gasoline to ensure the high-octane fuel’s widespread availability to consumers.35 As with leaded gasoline, today’s

33 The language of 211(c) does not require any greater showing of harm than 202(a). See Ethyl Corp. v. EPA, 541 F.2d 1, 16 (D.C. Cir. 1976) (“[I]n making the threshold determination of danger both sections are the same.”).
34 RFA MTE Comments, supra note 8, at 5–6, 11.
35 Amoco Oil Co. v. EPA, 571 F.2d 722, 744 (D.C. Cir. 1974) (“The affirmative marketing requirement does in fact control the sale of leaded gasoline, for the regulation provides in effect that the specified
87 AKI regular gasoline should eventually be phased out of the market and entirely replaced with a new minimum RON gasoline that allows vehicle manufacturers to make cost-effective engine efficiency improvements to reduce carbon dioxide emissions.

Before controlling low-octane gasoline, EPA must consider “all relevant medical and scientific evidence available to [it], including consideration of other technologically or economically feasible means of achieving emission standards under” section 202(a) of the Clean Air Act, which governs vehicle emissions standards. Because raising compression ratios with high-octane gasoline is the lowest cost means of reducing CO₂ emissions from fuels, this evidentiary review will favor controlling gasoline octane rating.

Some EPA officials have suggested that the requirement to consider alternative means of achieving emission standards mandates that EPA single-mindedly “pursue” economically feasible motor vehicle standards prior to regulating fuel to reduce emissions. That is wrong. EPA’s only duty is to “consider” motor vehicle standards as a procedural matter: EPA has already acknowledged, citing D.C. Circuit precedent, that the Agency “retains full discretion in deciding whether to adopt either fuel or vehicle controls, or both.” EPA, in other words, is under no obligation to prioritize motor vehicle standards. In fact, Congress deliberately rejected such a substantive limitation and substituted it with more “flexible language” to allow EPA discretion to decide which option to pursue. Congress wanted EPA to pay attention to the relative “advantages and disadvantages” of motor vehicle standards; it did not take the extraordinary step of mandating that EPA operate with tunnel vision to single-

37 U.S. EPA, EPA’s Regulatory Authority to Address Octane 8 (May 5, 2015).
40 Id. (reviewing legislative history).
mindedly pursue motor vehicle standards instead of fuel controls as long as it was feasible to do so.41

EPA should establish an affirmative marketing requirement to introduce high-RON gasoline into the marketplace and phase in a minimum RON standard for all gasoline sold in the United States.

d. 98-100 RON Is an Ideal Minimum Octane Level.

The Proposed Rule invites comment on “the ideal octane level for mass-market consumption balanced against cost and potential benefits.”42 The Agencies note that “[s]ome positions for potential future octane levels include advocacy for today’s premium grade becoming the base grade of fuel available.”43 But today’s premium can be as low as 91 AKI, or approximately 95 RON. Although such a fuel would allow for some efficiency gains, a higher octane level would enable even higher compression ratios and therefore greater greenhouse gas reductions and fuel economy improvements. And if the higher octane rating is achieved with low-cost ethanol, these performance benefits could come at zero net cost. A 98-100 RON midlevel ethanol blend of approximately 25-30% ethanol achieves an ideal balance. The high octane rating of the fuel would more than compensate for the lower energy density of the ethanol, allowing improved performance and optimal greenhouse gas savings with no loss in real-world mileage.44 And it could be blended by simply adding ethanol to existing gasoline blendstocks, so such a fuel would impose no additional cost on refineries.

The auto industry and government laboratories have endorsed a high-octane fuel meeting this description. Ford Motor Company, for example, “strongly recommend[ed] that EPA pursue regulations . . . to facilitate the introduction of higher octane rating market fuels,” and noting that the “increased octane rating from

41 Cf. Michigan v. EPA, 135 S. Ct. 2699, 2707 (2015) (“[R]easonable regulation ordinarily requires paying attention to the advantages and the disadvantages of agency decisions.”).
42 Proposed SAFE Rule, 83 Fed. Reg. at 43,041.
43 Id.
44 See Darlington et al., supra note 23 (reviewing the literature on the efficiency and carbon dioxide benefits of high-octane midlevel ethanol blends); see also Addendum A, at 3–4 (reviewing the literature on the benefits of 98 RON E25).
increased ethanol content has the potential to allow for fuel economy, performance and emissions improvements through more efficient engine designs.45 Oak Ridge National Laboratory confirms that “intermediate alcohol–gasoline fuels, in particular E30, show promise as a means to increase vehicle efficiency in optimized SI engines.”46 And EPA itself has observed that E30 could allow manufacturers “to raise compression ratios to improve vehicle efficiency as a step toward complying with the 2017 and later light-duty greenhouse gas and CAFE standards.”47

\textbf{III. EPA SHOULD SUPPORT HIGH-OCTANE FUEL BY REMOVING REGULATORY BARRIERS TO MIDLEVEL ETHANOL BLENDS.}

To allow a minimum octane standard to achieve environmental benefits without raising consumer and industry costs, EPA must remove regulatory barriers that impede the sale of HOLC fuel.

The President’s decision to fix senseless restrictions on the Reid Vapor Pressure 1-pound waiver is a step in the right direction, but more must be done to enable HOLC fuel. Removing the remaining senseless regulatory barriers to HOLC fuel would advance the Trump Administration’s priorities. It would “alleviate unnecessary regulatory burdens,”48 promote the “clean and safe development of our Nation’s vast energy resources” enhancing “the Nation’s geopolitical security”,49 and “promote American agriculture and protect the rural communities where . . . many of our renewable fuels are cultivated.”50

\begin{footnotesize}
45 See, \textit{e.g.}, Cynthia Williams, Ford Motor Company, Comments on Proposed Tier 3 Rule, EPA-HQ-OAR-2011-0135-4349 (July 1, 2013), at 3, 16–17 (“strongly recommend[ing] that EPA pursue regulations . . . to facilitate the introduction of higher octane rating market fuels,” and noting that the “increased octane rating from increased ethanol content has the potential to allow for fuel economy, performance and emissions improvements through more efficient engine designs”).

47 Tier 3 Rule, 79 Fed. Reg. at 23,528.

\end{footnotesize}
a. EPA Should Fix the Erroneous Fuel Economy Formula and Approve a High-Octane Low-Carbon Midlevel Ethanol Certification Fuel.

High-octane fuel is of limited use without vehicles optimized to use it. That is why in 2014, EPA invited auto manufacturers to request permission to certify their vehicles with a “high-octane, high-ethanol gasoline” such as E30, and noted that this fuel could allow manufacturers “to raise compression ratios to improve vehicle efficiency as a step toward complying with the . . . light-duty greenhouse gas and CAFE standards.” Studies by the auto industry and the Department of Energy support EPA’s view. But despite EPA’s longstanding invitation to auto manufacturers, auto manufacturers have not yet requested permission to use a HOLC test fuel in certification.

The auto manufacturers’ reluctance to request the use of a HOLC certification fuel is explained in part by the current gasoline fuel economy formula’s bias against ethanol. The source of this error is an outdated vehicle sensitivity measure in the gasoline fuel economy equation known as the R-factor, which measures “how vehicles respond to changes in the energy content of the fuel.” The current R-factor of 0.6 erroneously implies that a 10% change in the test fuel’s energy content causes only a 6% change in vehicle fuel economy. But in reality, fuel economy in today’s vehicles is almost perfectly responsive to changes in fuel energy content, so the current R-factor is in fact closer to 1, as EPA admits. The upshot of this is that vehicles that certify on a test fuel with a lower energy content (like higher ethanol test fuels) would be unduly penalized.

51 Tier 3 Rule, 79 Fed. Reg. at 23,528; see also Proposed SAFE Rule, 83 Fed. Reg. at 43464 (“Higher octane gasoline [like E30] could provide manufacturers with more flexibility to meet more stringent standards by enabling opportunities for use of lower CO2 emitting technologies (e.g., higher compression ratio engines, improved turbocharging, optimized engine combustion.”).
52 See Addendum A, at 28–30 (discussing the literature). The National Research Council has also recommended that EPA allow “the option to use E30” if an auto manufacturer requests permission to do so in order to “facilitate the development of higher compression ratio engines.” Nat’l Research Council, supra note 9, at 82.
53 Tier 3 Rule, 79 Fed. Reg. at 23,531.
54 Id. (stating that the R-factor’s “value is presently set at 0.6”); Proposed Tier 3 Rule, 78 Fed. Reg. at 29,913 (stating that the R-factor “accounts for the fact that the change in fuel economy is not directly proportional to the change in energy content of the test fuel.”).
55 See Aron Butler et al., Analysis of the Effects of Changing Fuel Properties on the EPA Fuel Economy Equation and R-Factor, at 1, Memorandum to the Tier 3 Docket, EPA-HQ-OAR-2011-0135 (Feb. 28, 2013), at 4–5 (suggesting a corrected value might lie “between 0.8 and 0.9”).
fuels) could have a lower fuel economy rating merely because of a change in the test fuel, even though the vehicle itself is more efficient.56 That is why auto manufacturers have made their support for HOLC certification fuel contingent on fixing the R-factor. As Mercedes explained in its Tier 3 comments, “given that the volumetric energy content of an E25 Tier 3 fuel would be almost 9% lower than an E0 fuel” currently used for fuel economy certification, correcting the R-factor “is a necessary step for the acceptance of” HOLC fuels.57 Mercedes estimates that an “R-factor of 0.6, as is currently the case, would result in approximately [a] 5% volumetric fuel efficiency loss for an E25 fuel [compared to E0 fuel], which mathematically hinders any manufacturer seeking to certify a vehicle on such a fuel.”58

Congress has prohibited EPA from penalizing auto manufacturers with illusory losses in vehicle efficiency merely because of changes in the test fuel.59 But that is exactly what would happen if auto manufacturers had to use the existing gasoline fuel economy equation to certify new vehicles with a HOLC test fuel. EPA should—as required by law—promptly correct the current gasoline fuel economy calculation by finalizing a corrected R-factor.60

56 See Tier 3 Rule, 78 Fed. Reg. at 29,993 (“Because ethanol has a lower energy content than gasoline, i.e., fewer British thermal units (Btus) or joules per gallon, and fuel economy is defined in terms of miles per gallon of fuel, it is almost certain that the same vehicle tested on a test fuel with 15 percent ethanol content will yield a lower fuel economy value relative to the value if it were tested on the current test fuel with zero ethanol content.”).

58 Id.

59 See 49 U.S.C. § 32904(c) (“[T]he Administrator shall use the same procedures for passenger automobiles the Administrator used for model year 1975 . . . or procedures that give comparable results.”); see also Ctr. for Auto Safety v. Thomas, 847 F.2d 843, 846 (D.C. Cir. 1988) (en banc) (Wald, C.J., concurring) (“By inserting the comparability requirement, Congress meant to insure that auto manufacturers be credited only with real fuel economy gains, not illusory gains generated by changes in test procedures.”), reh’g granted and opinion vacated on other grounds, 856 F.2d 1557 (per curiam).

60 With an R-factor of 1, the R-factor recommended by the auto industry, the corrected gasoline fuel-economy equation would be as follows:

$$\frac{5.174 \times 10^4 \times CWF}{[(CWF \times (\text{NMOC} + CH_4)) + (0.429 \times \text{CO}) + (0.273 \times \text{CO}_2)] \times \text{NHV}]$$

where,

- $5.174 \times 10^4 = \text{density of H}_2\text{O at 60°F} \times \text{specific gravity of 1975 reference fuel} \times \text{Net Heating Value (NHV) of 1975 reference fuel};$

- CWF is the carbon weight fraction of the certification test fuel;
EPA should fix the R-factor in the final SAFE rule or before then. When it does so, EPA should reiterate to auto manufacturers its outstanding invitation to request a HOLC certification fuel. EPA should be clear that, as required by law, the corrected gasoline fuel economy formula would also be applied to measure fuel economy for vehicles certified on HOLC blends, not just to regular gasoline and premium-required vehicles. That would ensure that auto manufacturers are not penalized by the lower energy content of the HOLC test fuel.

b. **The Department of Transportation and EPA Should Account for the Energy Conservation and Renewable Benefits of HOLC Fuel In Calculating Compliance.**

To ensure that HOLC fuels compete on an equal footing with conventional gasoline and alternative technologies, the Department of Transportation and EPA should recognize the energy and carbon benefits of HOLC fuels in compliance calculations.

Under the CAFE program, the agencies should recognize that HOLC fuel is “consistent with the need to conserve energy” because it enables increased efficiency, reduces consumer fuel costs, and promotes energy independence, consistent with the goals of the CAFE program and the Administration. EPA should then finalize a petroleum-equivalency factor for a midlevel ethanol certification fuel, consistent with EPA’s authority to determine “the quantity of other fuel that is equivalent to a gallon

- NHV is the net heating value of the certification test fuel;
- NMOG is the non-methane organic gas [g/mi] in the exhaust gas as determined in accordance with applicable test procedures;
- CH₄ is the methane [g/mi] in the exhaust gas;
- CO is the carbon monoxide [g/mi] in the exhaust gas; and
- CO₂ is the carbon dioxide [g/mi] in the exhaust gas.

This formula, proposed by GM in the Tier 3 rule, is functionally identical to the current fuel economy equation for gasoline vehicles, except that the R-factor is corrected to 1.0. See 40 C.F.R. § 600.113-12(h)(1). The current fuel economy equation for gasoline omits organic gases, measuring pure hydrocarbons only. *Id.* § 600.113-12(h). “[T]heir effect has been included” in the proposed formula “by virtue of using NMOG in the equation.” Robert Babik, General Motors LLC, Comments on Proposed Tier 3 Rule, EPA-HQ-OAR-2011-0135-4288 (June 28, 2013), at 4.

of gasoline.”62 This factor should recognize that HOLC fuels conserve energy and have substantially less petroleum than gasoline.

Under the GHG program, EPA should account for the carbon neutrality of ethanol combustion. EPA should incorporate this assumption into its carbon-related exhaust emissions (CREE) calculation, by finalizing a multiplier based on the carbon content of the fuel’s gasoline portion alone. To further reduce compliance costs and put HOLC blends on par with electric vehicles, EPA could extend a similar sales multiplier to vehicles that run on HOLC fuel. Like electric vehicles, vehicles fueled with HOLC blends would significantly reduce GHG emissions and offer “greater GHG emission reductions in the longer-term.”63

c. The Department of Transportation and EPA Should Harmonize the National Program by Restoring the Flex-Fuel Vehicle Credits Intended by Congress.

In the proposed SAFE Rule, NHTSA “seeks comment on its current approach” for incentivizing dual-fueled flex-fuel vehicles under the CAFE program.847 NHTSA’s current approach as stated in its regulations is that after model year 2019, NHTSA will no longer use a harmonic average to weigh the fuel economy of flex-fuel vehicles when operating on gasoline and E85 and will instead use a real-world-use weighting factor (the “F” factor) approved by EPA. NHTSA will continue applying the 0.15 “liquid alternative fuel” factor required by Congress to calculate the fuel economy of flex-fuel vehicles operating on E85.64

64 40 C.F.R. § 600.510.12(c)(2)(v). The current CAFE formula for model year 2019 and later flex-fuel vehicles in the applicable regulation is as follows:

$$\text{MPG} = \left(\frac{F}{\text{MPG}_A} + (1 - F) \frac{1}{\text{MPG}_G} \right)^{-1}$$

Where:
F = 0.00 unless otherwise approved by EPA;
MPGA = Fuel economy for operation on alcohol fuel divided by 0.15; and
MPGG = Fuel economy for operation on gasoline.
RFA agrees that “it would be inappropriate to measure duel-fueled vehicles’ fuel economy like that of conventional gasoline vehicles with no recognition of their alternative fuel capability, which would be contrary to the intent of EPCA/EISA.”

NHTSA’s current approach to post-2019 FFV incentives is lawful and appropriate. The statute does not phase out the 0.15 divisor that applies to liquid alternative fuels like E85. The best reading of the phase-out provision, 49 U.S.C. § 32906(a), is that the phase out relates only to the harmonic average calculation, and not to the 0.15 divisor. This is made clear by the phase-out provision’s cross-reference to § 32905(f), which requires EPA to calculate manufacturer average fuel economy using the harmonic average. NHTSA’s decision to retain the 0.15 liquid alternative fuel multiplier is therefore appropriate.

However, in order to take advantage of the 0.15 divisor, manufacturers need EPA to finalize a new F-factor. The current F-factor of 0.14 applies only until model year 2018. EPA should finalize a new F-factor that accounts for the predicted increase in the use of E85.

EPA should also harmonize its greenhouse gas standard regulations with existing CAFE regulations by restoring the 0.15 divisor for flex-fuel vehicles. As the Department of Energy has noted, flex-fuel vehicles could facilitate a transition to HOLC fuel by providing “a near-term market for the fuel, making it widely available such that future vehicles optimized for the new high-octane fuel can realize improved efficiency.” There is thus good reason to continue supporting flex-fuel vehicle production in the near term.

66 49 U.S.C. § 32905(a) (“A gallon of liquid alternative fuel used to operate a dedicated automobile is deemed to contain .15 gallon[s] of fuel”).
67 See id. § 32906(b).
69 See Draft Environmental Impact Statement, Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Year 2021-2026 Passenger Cars and Light Trucks, at 6-30 & fig. 6.2.4-3 (July 2018).
IV. **CONCLUSION**

HOLC fuel would enable cost-effective increases in vehicle efficiency, reduce CO$_2$ emissions, and improve air quality. The agencies should support this transition with a minimum octane standard, coupled with the removal of regulatory barriers that impede the widespread introduction and sale of HOLC blends.
August 23, 2017

LITERATURE REVIEW OF ETHANOL USE FOR HIGH OCTANE FUELS

FINAL REPORT

Prepared for:

Renewable Fuels Association
425 3rd Street
Washington DC, 20024

Prepared by:

Ricardo, Inc.
40000 Ricardo Dr.
Van Buren Twp., MI 48111

Ricardo Project Number:
C015568

Date issued:
August 22, 2017
REVISION HISTORY

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Section #s Affected</th>
<th>Changes Made</th>
<th>Changed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>June 13, 2017</td>
<td>all</td>
<td>First issue</td>
<td>DLB2</td>
</tr>
<tr>
<td>2</td>
<td>August 22, 2017</td>
<td>all</td>
<td>Updated</td>
<td>MSK</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

A literature review was performed to provide an objective view of the existing body of research regarding the use of ethanol to produce high octave gasolines in the US and the impact of high octave fuels on modern spark-ignited engine efficiency. The review found that ethanol has several innate characteristics that make it amenable to increasing the compression ratio and therefore the efficiency of modern spark-ignited engines. Ethanol has lower energy content than gasoline on a per-gallon basis. However, when ethanol is splash blended to increase the octane rating of the finished gasoline, and advantage is taken of the higher octane by increasing the compression ratio of the engine, mid-level ethanol blends can offer similar fuel economy and driving range as gasoline.

High octave, mid-level blends of ethanol ranging from 15-40% by volume are seen as offering the best trade-off between greenhouse gas (GHG) benefits and ease of implementation of fuel dispensing to achieve widespread availability. The National Renewal Energy Laboratory (NREL) concluded that since the UL already has a certification class for E25 dispensing equipment that is similar in price to E10 equipment, it would be the easiest to deploy and least costly of the high octave fuels.

Ethanol is known to have a high octane rating of approximately 108 research octane number (RON), giving it a high resistance to engine knock. For comparison, regular grade E10 gasoline has RON values typically around 92 for most of the US. What is less well-known, however, is that ethanol also has high sensitivity, meaning that in today’s high power density engines, which often run with retarded combustion timing, the performance level can be extended to a greater degree than is indicated by RON alone. Ethanol also has a heat of vaporization that is almost four times higher than gasoline when compared on a stoichiometric combustion air basis. This means that in direct injection engines, there is a charge cooling effect giving ethanol a “cooling octane number” that is additive to its chemical octane rating. The energy density of ethanol, on the other hand, is lower than that of gasoline on a volumetric basis so that one gallon of E85 fuel typically has about the same energy as 0.75 gallons of gasoline without any ethanol.

Numerous studies and technical papers from a wide variety of sources were examined for this literature review. A detailed bibliography of the studies reviewed is included with this report. The results from the studies reviewed generally support a main conclusion that splash blending ethanol is a highly effective means of raising the octane rating of gasoline and enabling low-cost efficiencies and reduced emissions in modern spark-ignition engines. For example, one study from an authoritative group of Original Equipment Manufacturers (OEM) scientists found that compression ratio increases leading to efficiency improvements of 5% for DI boosted gasoline engines could result from increasing the octane rating to 98 RON with 25% ethanol fuel. On the subject of emissions
impacts, one study noted GHG reductions of 6 – 9% depending on driving behavior with 98-RON E30 fuel at equal performance levels in engines having compression ratio raised from 10:1 to 13:1. On the economics of high octane fuels, one study found that the refinery cost of increasing octane to 98 RON from 93 RON is only $0.02/gallon when ethanol is used as the means of increasing octane rating; however, the cost is $0.20 gallon when hydrocarbon octane sources are used. Finally, one group used EPA’s OMEGA tool for modeling the costs of achieving GHG standards for the 2025 model year and found that by adopting a 98 RON E25 fuel standard and increasing engine efficiency could result in a national cost savings of $7B or a per vehicle savings of $436 over continued use of regular E10 gasoline.
TABLE OF CONTENTS

1 Introduction ... 6
2 Approaches to Improving Vehicle Fuel Economy and Engine Efficiency ... 6
3 Limitations on Efficiency Improvement ... 8
 3.1 Engine Knock... 9
 3.2 Low-speed pre-ignition and mega-knock ... 12
 3.3 Testing limits imposed by knock.. 14
4 Fuel Properties ... 15
 4.1 Octane and anti-knock ratings ... 15
 4.2 Chemical octane and charge cooling effects .. 17
 4.3 Sensitivity to autoignition kinetics ... 18
 4.4 Fuel and oil impacts on pre-ignition and mega-knock ... 21
 4.5 Fuel Effects on Tailpipe and Evaporative Emissions .. 23
5 Solutions to Treating the Engine & Fuel as a System .. 25
 5.1 Co-Optimization of Fuels & Engines (Co-Optima) Initiative ... 25
 5.2 Octane on Demand ... 26
 5.3 Higher Octane Floor for US Regular Gasoline ... 28
 5.4 Greenhouse Gas Emissions of High-Octane, Mid-Level Ethanol Blends 30
6 Economics of High Octane Fuels (HOF) ... 31
7 Conclusions ... 35
8 Bibliography .. 36
LITERATURE REVIEW OF ETHANOL USE FOR HIGH OCTANE FUELS

1 INTRODUCTION

The Renewable Fuels Association (RFA) has requested Ricardo to provide an objective review of the existing body of research concerning the technical merits of using ethanol as a blendstock to increase the octane rating of gasoline motor fuels sold in the United States. Furthermore, the Association is seeking a review of literature that examines how modern engine efficiency is impacted by the properties of ethanol-gasoline blends including the fuel’s octane rating, the heat of vaporization and the sensitivity of the fuel or the difference between its research octane number (RON) and motor octane number (MON).

Ricardo will expand upon and update the review that was performed last year in preparation for the RFA to submit comments on the EPA’s Technical Assessment Report. This report embodies a new objective literature review articulating the technical issues regarding renewable fuels use in spark-ignited engines and motor vehicles. The report will examine in particular the effects on engine efficiency and performance through varying the fuel anti-knock index (RON + MON)/2, sensitivity (RON – MON) and the heat of vaporization.

2 APPROACHES TO IMPROVING VEHICLE FUEL ECONOMY AND ENGINE EFFICIENCY

Two main solution pathways to improving vehicle fuel economy and reducing CO₂ emissions have been outlined as the dominant approaches worldwide in recent years:

- High-efficiency naturally-aspirated engines utilizing high compression ratio, modified inlet valve closing strategies, and/or cooled exhaust gas recirculation, for high efficiency at lower specific rating
- Highly-boosted, downsized engines for part-load efficiency with relatively high specific rating

The Magma concept described by Osborne (Osborne, et al. 2017) represents an attempt to combine high compression ratio and advanced valve-timing strategy with downsizing and boosting in a Miller cycle with advanced boosting strategies to obtain greater efficiency benefits without compromising full-load performance.

Another main solution pathway is the hybridization of conventional internal combustion engines. This approach to improving vehicle and engine efficiency starts with simple engine start/stop strategies to reduce the amount of time the engine is idling and increases the amount of electric assist in an attempt to reduce the amount of time the engine is running.
at low loads and make a shift towards operation at or near its peak efficiency point. Another added benefit of electrification is the ability to recapture the vehicle's kinetic energy instead of wasting it producing heat. The hybridization approach is often combined with the first main approach of increasing the efficiency of naturally-aspirated engines by increasing the compression ratio and modifying the inlet valve closing event to minimize the pumping work at the lower loads, often called Atkinson cycle. In recent years, Atkinson cycle engines have also been implemented in non-hybrid vehicles, albeit with not as great an increase in compression ratio nor modification of inlet valve closing timing, such as the Mazda Atkinson-cycle engine (Weissler 2011).

One more solution pathway to increasing efficiency is variable compression ratio, wherein the engine operates at high compression ratio at lower loads and switches to a lower compression ratio when high loads are called for. Variable compression ratio (VCR) has been researched for years (Boretti, Scalzo and Masudi 2011) with many different mechanisms being investigated but has only recently been developed to the point of production-intent by Nissan Motor Co. (INFINITI 2017), (autoblog 2016). The fuel economy benefits of 2-step and continuously variable VCR was examined by Shelby (Shelby 2017). The study estimated a 2-step VCR fuel economy benefit of 2.5-3.1% on the EPA metro-highway (M-H) drive cycle and 0.8-1.2% on the US06 cycle relative to a fixed 10:1 compression ratio engine. The benefit levels increased slightly for continuously variable VCR compared to 2-step to 2.7-3.3% on the M-H and more significantly on the US06 to 1.7-2.1%.

There are two key, fundamental mechanisms being addressed by the solution pathways outlined above: firstly, the compression ratio which at the most basic level controls the overall thermodynamic efficiency of an engine cycle and secondly, the parasitic losses in an engine which limit the amount of useful shaft power that can be produced from the conversion of the fuel's energy into heat. The parasitic losses can be further broken down into mechanical friction and pumping loss or engine breathing losses. Mechanical friction is mainly dependent on engine speed but pumping losses are mainly dependent upon engine load with higher losses being incurred at lower loads due to throttling as the primary means for controlling engine load in a spark-ignited (SI) engine. Pumping losses can be minimized through either early intake valve closure (EIVC) or late intake valve closure (LIVC) approaches for stoichiometric engines or by lean operation. There are challenges to keeping emissions in check with lean combustion systems and these approaches require lean NOx aftertreatment; nonetheless these technologies are showing promise in also achieving cost reductions as they continue to be developed.

The optimal intake valve closure strategy has also been the subject of debate and research for some time (Boggs, Hilbert and Schechter 1995) with various outcomes depending on
whether it is applied to a naturally-aspirated or a boosted engine (Ferrey, et al. 2014). Comparisons between EIVC and LIVC have recently been made experimentally on an SI engine with the EIVC strategy showing slightly greater potential to improve engine efficiency at part-load conditions, although both approaches were better than the conventional throttled approach (Lanzanova, Nora and Zhao 2017). The major drawback of the EIVC strategy was longer combustion duration, and it is for this reason that Osborne et al. use a modified intake port to enhance the tumble motion when adopting the EIVC strategy for the Magma concept.

3 LIMITATIONS ON EFFICIENCY IMPROVEMENT

There are practical limitations to improving the efficiency of modern gasoline engines that fall into two categories: structural limitations and end-user acceptability limits. Structural limitations define the peak pressures within the cylinder and maximum material temperatures that can be tolerated. There are also limitations that come about from a vehicle user’s desire for comfort, namely the noise, vibration and harshness (NVH) experienced in the vehicle. These vehicle characteristics have been translated into engineering requirements on the engine in the form of limits on the rate of pressure rise and on the variation of average pressure over an engine cycle. Rate of pressure rise impacts the sound quality and harshness of sound that is emanating from the engine and the variation of average pressure has to do with the lower frequency vibrations that are transmitted through the vehicle structure and felt by the driver. Rate of pressure rise will be discussed more in the section on engine knock.

The average pressure over an engine cycle is known as the mean effective pressure (MEP) and is used as a measure of the work produced per cycle. Variation of MEP represents the variation in work output from cycle to cycle and the coefficient of variation (COV) is therefore a measure of variability of work produced expressed as a percentage of the average work per cycle. The COV of IMEP then is used as a measure of the variation of work output or strength of combustion. The “I” before MEP simply means that it is indicated from the cylinder pressure diagram and is the maximum work that can be done by the combustion pressures acting on the piston top before friction and pumping losses are subtracted.

There are two ways of expressing the IMEP for a 4-stroke engine: gross IMEP and net IMEP. Gross IMEP is calculated as the mean cylinder pressure averaged over all four strokes of the cycle including the intake and exhaust breathing strokes; net IMEP, or NMEP for short, is the mean pressure calculated only over the compression and expansion strokes of a combustion cycle, and is therefore a purer measure of the work obtained from combustion without reference to the intake and exhaust strokes. For this reason the COV of IMEP is
sometimes referred to as “combustion variability.” In either case, variation in IMEP is a key component of the forcing function for the vibrations that are felt in a vehicle and are especially noticeable at idle conditions where the average IMEP is small. Limits are set during engine testing programs for the COV of IMEP at 3% or less typically which represents an acceptable level of combustion variation that is derived from studies of what drivers perceive as tolerable levels of vibration within a vehicle.

3.1 Engine Knock

The most common phenomenon limiting gasoline engine performance and efficiency is commonly known as knock which tests all of the limiting design factors and can result in severe engine damage if not properly controlled. The engine structure can be stressed well-beyond design limits due to the very high cylinder pressures that are created with severe knock. The fact that knock is a very fast, localized heat release means that pressure waves are generated and can lead to very high heat transfer rates from the scrubbing action of the waves raising combustion chamber surface temperatures if it is prolonged. The fast heat release gives rise to pressure waves in the cylinder that are in the audible frequency range which excite the engine structure with a characteristic knocking sound. The audible knocking frequency range is much higher (as shown below by Naber (Naber, et al. 2006) in the section on knock measurement) than the low frequency COV of IMEP variations described above which are felt as vibrations in a vehicle.

The theory behind knock was described by Draper (Draper 1933) in a NACA report as follows: “If a firecracker is exploded inside a closed drum containing air, two effects naturally follow: A series of sound waves is set up by the sudden local increase in pressure at the explosion and the general pressure within the drum rises because of the energy liberated. The frequency of the resulting sound waves will depend on the dimensions of the drum, the air pressure, and the position of the firecracker within the drum. It is reasonable to suppose that the process known as detonation in internal-combustion engines is similar to that taking place in the case outlined above.” Draper further developed the theory of knock in order to quantify its characteristics as illustrated in Figure 1.
FIGURE 1 PRESSURE WAVE PATTERNS IN A CYLINDER AS DESCRIBED BY DRAPER
Heywood (Heywood 1988, 462) described knock as emanating from “autoignition of the fuel-air mixture in the end-gas. *Autoignition* is the term used for a rapid combustion reaction which is not initiated by any external ignition source.” Naber have used both cylinder pressure transducers and accelerometers mounted on an engine block to compare alternative ways of measuring and controlling knock. Figure 2 compares the cylinder pressure traces and the band-pass filtered signals (5-27 kHz) which were used to determine knock intensity. The frequencies of the filtered pressure signals correlates well with the modes of vibration originally developed by Draper. The knocking intensity was also quantified by Naber’s measurements and expressed as a pressure intensity for the amplitude of the filtered pressure signal or an accelerometer intensity based on the filtered accelerometer signal.

FIGURE 2 CYLINDER PRESSURE TRACES FROM NON-KNOCKING (LEFT) AND KNOCKING (RIGHT) COMBUSTION EVENTS. (FROM NABER)
3.2 Low-speed pre-ignition and mega-knock

Low-speed pre-ignition (LSPI) is another phenomenon related to knock and occurs when enough heat is released before the spark can initiate a normal combustion event. LSPI can lead to mega-knock that can quickly destroy an engine; the results of low-speed pre-ignition and mega-knock can be seen in the piston damage shown in Figure 3 from Mayer (Mayer, Hofmann and Williams, et al. 2016a)

![Figure 3: Piston damage occurring as the result of low-speed pre-ignition leading to mega-knock (from Mayer, 2016a)](image)

The pre-ignition event, deflagration of the flame that was initiated by the spark, and mega-knock are all apparent in the pressure diagrams shown in Figure 4. There are multiple causes for LSPI such as detached combustion chamber deposits or hot residual gas but this work undertakes developing a methodology to verify only oil induced pre-ignitions. Mayer, 2016a clearly demonstrates that calcium detergent additives in engine oils were able to induce self ignitions whereas magnesium detergents failed to reach its critical temperature, as shown in Figure 5.
FIGURE 4 PRE-IGNITION LEADING TO MEGA-KNOCK AS SHOWN BY MAYER, 2016A

FIGURE 5 PRE-IGNITIONS CAUSED BY CALCIUM DETERGENTS BUT NOT BY MAGNESIUM DETERGENTS (FROM MAYER, 2016A)
In a study on using enrichment with a DI injector with charge cooling to suppress very heavy knock levels (up to 40 bar), a trade-off was observed in which knock intensity first increased by up to 60% before lower unburned gas temperatures suppressed knock under extremely rich conditions (vafamehr, Cairns and Moslemin Koupae 2017). Such a trade-off is not usually observed in low-to-moderate knock intensity situations. The trade-off was associated with reducing auto-ignition delay times outweighing increasing charge cooling and ratio of specific heats. Ethanol was seen to be more effective than other fuels in reducing knock intensity. Overall, the results demonstrate the risks in employing excess fuel to suppress knock deep within a heavily knocking combustion regime (potentially including a super-knock regime).

3.3 Testing limits imposed by knock

The limitations on efficiency improvement, both structural and user acceptability limits, have been well understood and translated into engine-specific engineering criteria so that engines can be tested in a repeatable manner on an engine dynamometer. Test procedures have been applied to determine the peak torque that can be achieved from an engine using different fuels. The basis of these test procedures is to identify the borderline knocking condition, that is the engine operating conditions where knock first becomes robustly detectable; an engine is operating at knock-limited conditions when borderline knock is detected. Test procedures such as these have been rigorously applied and are described in the following description adapted from Stein et al (Stein, Polovina, et al. 2012).

Starting from a low load point and as inlet pressure and NMEP are increased, the engine becomes more knock-limited and spark timing must be retarded. As NMEP increases and combustion phasing is retarded, the exhaust temperature increases both due to the higher load, which reduces heat transfer per unit mass, and due to degraded efficiency, which results in increased energy in the exhaust gas. When exhaust gas temperature reaches its limit, lambda (defined as the air-fuel ratio divided by the stoichiometric air-fuel ratio) must be enriched to control exhaust temperature. Although turbocharged SI engines typically have a 950°C turbine inlet temperature limit, it was found from experience that an exhaust temperature of 850°C on the single cylinder engine used in these tests corresponded to a multi-cylinder engine exhaust temperature of 950°C. Finally, as inlet pressure and NMEP are further increased, the peak cylinder pressure can also increase, depending on the amount of combustion phasing retard. Once the peak cylinder pressure reaches the engine’s structural limit, the spark timing must be retarded. A load sweep wherein these test procedures were applied and the specific limits for each constraining parameter is illustrated in Figure 6. In the top graph CA50 indicates the crank angle (CA) where 50% of the fuel is burned, representing the mid-point of combustion, and was set at 30° aTDC (after top dead center) as combustion stability tends to become unstable beyond that. In
the third graph from the top lambda is ideally equal to 1.0, except as needed to protect the exhaust turbine.

4 **Fuel Properties**

4.1 Octane and anti-knock ratings

Because engine knock is such a dominant factor in limiting the efficiency and performance of modern gasoline engines, it is important to understand the characteristics of fuels as they strongly influence the knocking tendency of SI engines. The tendency of gasoline fuels to resist knocking in an engine is known as the octane number. “Octane number is not a single-valued quantity and may vary considerably depending on engine design, operating
conditions ..., ambient weather conditions ..., mechanical condition of engine, and type of oil and fuel used in past operation. ...Several octane rating methods have been developed. Two of these - the research method (ASTM D-2699)¹ and the motor method (ASTM D-2700) – are carried out in a standardized single-cylinder engine” (Heywood 1988, 471) under two specified sets of engine operating conditions giving a research octane number (RON) rating to a fuel, and a motor octane number (MON) rating to a fuel, respectively. The anti-knock index (AKI) then is the arithmetic average of the RON and MON numbers.

It is important to understand the engine operating conditions for the RON and MON tests so applicability to today’s engines can be assessed. The RON and MON tests are both done in a variable compression ratio single-cylinder engine known as a “Cooperative Fuel Research (CFR™) engine manufactured by GE Energy Waukesha,”² (Stein, Polovina, et al. 2012) but at different inlet conditions, engine speeds and spark timings as shown in Table 1.

<table>
<thead>
<tr>
<th>TABLE 1 FROM STEIN, 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1. Engine conditions for the RON and MON tests.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RON</th>
<th>MON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Air Temperature</td>
<td>52°C</td>
<td>38°C</td>
</tr>
<tr>
<td>Inlet Mixture Temperature</td>
<td>*</td>
<td>149°C</td>
</tr>
<tr>
<td>Intake Air Pressure</td>
<td>atmospheric</td>
<td>atmospheric</td>
</tr>
<tr>
<td>Coolant Temperature</td>
<td>100°C</td>
<td>100°C</td>
</tr>
<tr>
<td>Engine Speed</td>
<td>600 rpm</td>
<td>900 rpm</td>
</tr>
<tr>
<td>Spark Timing</td>
<td>13° bTDC</td>
<td>14 - 26° bTDC</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>4 - 18</td>
<td>4 - 18</td>
</tr>
</tbody>
</table>

Not specified, but will be lower than the inlet air temperature.

“Carburetion is used for fuel introduction in these tests. For the RON test, the inlet air temperature of 52°C is set upstream of the carburetor.” (Stein, Polovina, et al. 2012) As a consequence the RON test more closely mimics the conditions of a port-injected engine where the fuel evaporation cools the fresh charge mixture in the intake port. “For the MON test, the inlet air-fuel mixture temperature of 149°C is set downstream of the carburetor.” (Stein, Polovina, et al. 2012) Consequently the MON test does not include any of the charge cooling effect from the fuel evaporation. That is why “many published papers ... indicate that the knock resistance of a fuel in modern engines more closely realtes to RON.” (Stein, Polovina, et al. 2012) In direct injection (DI) engines, however, all of the fuel evaporation takes place within the cylinder, although much of the heat of vaporization may be picked up from the combustion chamber walls rather than the air charge for wall-guided injection.

¹ ASTM denotes American Society for Testing and Materials; the letter and number defines the specific testing code.
² The CFR engine manufacturing rights have been owned by CFR Engines, Inc. since 2014.
systems. Regardless of the type of DI injection spray however, it is the cooling of the fresh air charge in the cylinder that enables an increase in the amount of charge that can be inducted and an increase in the resistance to knock.

Vertin (Vertin, et al. 2017) studied the effects of gasoline AKI at high altitude and found that vehicles operating with 85 AKI fuel showed strong evidence detected onset of knock earlier than when operating with 87 AKI fuel and used different engine control setting for knock avoidance. As a consequence they found all 5 of the tested vehicles showed some reduction in net power. Williams (Williams, et al. 2017) found that, for Euro 5 and Euro 6 passenger cars, the benefits of moving to higher octane fuel were about double on the US06 test cycle than those observed for the WLTC test cycle.

The octane index (OI) has been proposed as a better way to describe the anti-knock quality of gasolines in modern DI engines by Kalghatgi (Kalghatgi, Fuel/Engine Interactions 2013), (Kalghatgi, Head, et al. 2014) where

\[OI = (1 - K) \ast RON + K \ast MON \]

The fuel's sensitivity is the difference between its RON and MON ratings, or \(S = RON - MON \), and the equation can be rewritten as

\[OI = RON - K \ast S \]

For downsized turbocharged engines running at higher torque levels, the values of K have been found to be negative; i.e. the anti-knock performance of a fuel increases proportionally with RON and with fuel sensitivity. However, Stein (Stein, 2012) noted the values of K depend on the operating conditions of the engine, the fuel system type, and the fuel's chemical knock resistance and heat of vaporization; K decreased with increasing evaporative charge cooling (e.g. as provided by DI fuel injection or higher ethanol concentration in the fuel) and with increasing combustion phasing retard, and K increased with increasing inlet temperature and increasing compression ratio. A recent study by Zhou (Zhou, et al. 2017) compared four different test methods for determining K. The value of K was found to be consistently negative at higher loads with DI. However, at part-load conditions, K was determined to approach 0.5.

4.2 Chemical octane and charge cooling effects

Recognizing not only the importance of a fuel's ‘chemical’ octane rating as expressed by its RON and its sensitivity, but also a fuel's heat of vaporization to further reduce the propensity to knock in DI engines, Stein, 2012 designed a set of experiments to cleanly separate the two effects. This was accomplished by comparing performance of a neat gasoline (E0) to an E50 blend made from the same 88 RON gasoline blendstock splash blended with 50 v% ethanol, first of all using an upstream fuel injection (UFI) system and
secondly with a DI injection system. Figure 7 shows the chemical octane effect by the difference between the red and green lines and the charge cooling effect by the difference between the blue and red lines. The chemical octane effect is seen by comparing the E50 blend to the E0 gasoline, with octane ratings of X and Y respectively, where both fuels were fully evaporated before entering the engine by UFI. The charge cooling effect is seen in this case by comparing the same E50 fuel as introduced directly into the cylinder, thereby utilizing the full heat of vaporization of the ethanol blend by DI injection for charge cooling, to introduction of the fuel upstream with UFI injection which has no charge cooling in-cylinder.

As illustrated by the two black arrows at 16 deg aTDC CA50 timing, the maximum achievable NMEP at equal knock-limited combustion phasing increases from 5 bar to 15 bar solely due to the chemical octane increase and from 15 bar to 24 bar exclusively due to the influence of increased charge cooling.

4.3 Sensitivity to autoignition kinetics

A fuel’s sensitivity (RON – MON) plays a profound role in its ability to resist knock and the anti-knock ability increases as combustion phasing is retarded from minimum spark advance for best torque (MBT). Mittal (Mittal, Heywood and Green 2010) explained that sensitivity is a measure of how much the autoignition kinetics of a fuel vary with the temperature of the unburned end gas, as shown in Figure 8. Note the logarithmic scale on
the y-axis to get a better sense of how much autoignition delay times can be impacted by temperature. Shorter delay times means the fuel-air mixture will reach it’s critical autoignition point (i.e. knock) sooner. Figure 8 also shows conceptually how a high sensitivity fuel exhibits much longer autoignition delay times at low temperatures compared to a low sensitivity fuel and therefore a reduced tendency to knock. The conditions where high sensitivity fuels exhibit this tendency include the end gas temperatures in DI engines and turbocharged DI engines with retarded combustion phasing.

![Figure 8: Autoignition delay time vs. temperature.](image)

FIGURE 8 CONCEPTUAL ILLUSTRATION OF HIGH AND LOW SENSITIVITY FUELS KNOCKING TENDENCY (FROM STEIN, 2012)

The sensitivity of the fuels as ethanol is blended in increasing percentage is shown in Figure 9 with ethanol having a high sensitivity value greater than 15. As can be seen in Figure 7, above, the reduction in slope of the curves as combustion phasing (CA50) is retarded is due to the high sensitivity of the autoignition kinetics of ethanol to unburned gas temperature. The effect of ethanol’s high sensitivity on the bending over of the CA50 vs NMEP curves is seen to a greater degree in Figure 10 with an E75 blend having an almost unlimited ability to resist knock as it’s curves tend to level off at increasing NMEP levels while not having reached the 30° aTDC retard limit yet, except for the UFI case. Notice also how the E0 gasoline, with a much lower sensitivity, displays very little if any bending of it’s curves.
FIGURE 9 FUEL SENSITIVITY VS ETHANOL PERCENTAGE (FROM STEIN, 2012)

FIGURE 10 COMBUSTION PHASING VS NMEP FOR E0 AND THE E75 BLEND SHOWS GREATER BENDING OF THE CURVES THAN E50 (FROM STEIN, 2012)
A recent study using only E10 blends from Shell Global Solutions (Prakash, et al. 2017) also found that higher sensitivity fuels had a positive impact on engine thermal efficiency even though RON was more influential.

4.4 Fuel and oil impacts on pre-ignition and mega-knock

The influence of different ethanol fuels was investigated to analyze the effects of wall wetting in a DI engine on pre-ignitions (Mayer, Hofmann and Geringer, et al. 2016b) using the same methodology as outlined in Mayer, 2016a. In this study the fuel volatility was varied in order to change the amount of fuel impinging on the cylinder walls and mixing the oil film from the spray-guided DI fuel spray. They show that the number of pre-ignition events decreases up to 30 v% ethanol due to increasing heat of vaporization and charge cooling, but at 50 v% ethanol the rate of pre-ignition events rises drastically, Figure 11.

![Figure 11: Effects of Ethanol Content on Rate of Pre-Ignitions (From Mayer, 2016b)](image)

It is hypothesized and then demonstrated that the effect of increased fuel impingement overwhelms the increased charge cooling effect as seen in Figure 12. The “E50specE30” fuel is a blend of the E30 test fuel mixed with neat ethanol to bring it up to 50 v% ethanol, with similar volatility curves as E50. It is also noted that the tendency for mega-knock events is greatly reduced relative to the frequency of pre-ignition events due to increased charge cooling at higher ethanol concentrations.
From these experiments and others, Mayer, 2016b develop a model for the amount of liquid fuel that evaporates from 150°C up to the final boiling point to correlate almost perfectly with the rate of pre-ignition events as shown in Figure 13, reinforcing the hypothesis that droplets formed by fuel-oil mixture can be a significant contributor to pre-ignition.
4.5 Fuel Effects on Tailpipe and Evaporative Emissions

Because of the rising use of ethanol around the 2007 timeframe, West (West, et al. 2007) acquired a Saab 9-5 flex fuel vehicle (FFV) that was certified to Euro 4 emissions. Taking advantage of ethanol’s greater anti-knock properties, Saab specified the turbocharged engine at 180 hp on E85, 20% higher than the gasoline power rating of 150 hp. European emissions regulations required certification on gasoline only, however US regulations required certification on both gasoline and E85, so the vehicle was tested on both fuels. As can be seen in Figure 14 the vehicle showed significantly lower NMHC+NO\textsubscript{x} and CO emissions over the US06 test cycle when fueled with E85 than with gasoline. Stein (Stein, Anderson and Wallington, An Overview of the Effects of Ethanol-Gasoline Blends on SI Engine Performance, Fuel Efficiency, and Emissions 2013) note a CRC study (Haskew and Liberty 2011) which similarly found a statistically significant trend of decreasing NMHC and NMOG for US06. However there were no significant changes to tailpipe emissions noted on the other test cycles. Stein, 2013 also found lower PM emissions with increasing ethanol content.
The EPA regulates the vapor pressure of gasolines in order to limit the evaporative emissions from refueling and other sources on the vehicle. Ethanol-gasoline blends actually have the highest vapor pressure at 10 v% ethanol as shown in Figure 15. The EPA allows a “1 psi waiver” to E10 gasoline blends to encourage the blending of 10% ethanol in gasolines. Stein, 2013 notes that higher levels of ethanol are expected to have little impact on evaporative emissions in modern vehicles.

Figure 5. US06 Emissions for Saab FFV on gasoline and E85

Figure 5. Reid vapor pressures (predicted Dry Vapor Pressure Equivalent) for ethanol-gasoline blends and values for an ideal mixture [12].

Figure 14 Emissions Comparison of an FFV Running on Gasoline and E85 (From West)
5 SOLUTIONS TO TREATING THE ENGINE & FUEL AS A SYSTEM

5.1 Co-Optimization of Fuels & Engines (Co-Optima) Initiative

Transportation accounts for 70% of U.S. petroleum consumption and 27% of the country’s greenhouse gas (GHG) emissions, and the internal combustion engines (ICEs) that generate most of these emissions will continue to power vehicles for decades to come. The U.S. Department of Energy’s (DOE’s) Co-Optima initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D) (DOE 2016).

The DOE has developed a ‘merit function’ in order to quantify the components of efficiency gain that can be expected from high octane fuels as used in high efficiency engines. “The merit function numerically represents the efficiency gain that can be expected compared to a “current market fuel”.” (Miles 2016) The contributing factors to efficiency gain are: RON, Octane sensitivity, heat of vaporization, flame speed, distillation and particulate emissions as expressed in the equation of efficiency merit:

\[
Merit = \sum \left(\frac{RON}{(RON_{\text{min}} - 91)} + \frac{Octane\ Sensitivity}{K(S_{\text{min}} - 8)} + \frac{Heat\ of\ Vaporization}{0.01(ON/\text{kJ/kg})(\text{HoV}_{\text{min}} - 415[\text{kJ/kg}]) + (\text{HoV}_{\text{min}} - 415[\text{kJ/kg}])/130} \right)
\]

\[
+ \frac{Flame\ Speed}{(S_{L\text{max}} - 46[\text{cm/s}])/3} + \frac{Distillation}{LFV_{150}} - \frac{Particulate\ Emissions}{H(\text{PMI} - 2.0)[0.67 + 0.5(\text{PMI} - 2.0)]}
\]

The intent of the merit function is to provide a guide to the DOE research teams to address two important questions: what are the important properties and where should efforts be focused? However, there are stated limitations to what can be achieved by the research being performed under the guidance provided through the merit function however. Specifically, those limitations of the merit function are:

- Applicable only to stoichiometric SI engines
- Considerably simplified (e.g. does not distinguish between NA and turbocharged engines)
- Incomplete knowledge of the impact of many fuel properties (this is a major objective)
- Lack of knowledge of blending effects on properties
- Does not consider properties that do not impact efficiency (e.g. RVP)
- Property interactions have not been investigated thoroughly (e.g. RON & HoV)
• Estimates only an “average” efficiency increase (e.g. does not consider drive cycle effects or different vehicle applications)

Nonetheless, the merit function serves as a useful tool in assigning values to the various contributing factors of efficiency and guiding DOE research efforts. Co-Optima has also incorporated the viewpoints from multi-disciplinary stakeholder groups towards “accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines.” Stakeholder groups participating in last year’s workshop included trade/consumer groups, petroleum industry, original equipment manufacturers, and the biofuels industry.

5.2 Octane on Demand

Professor John Heywood and co-workers at MIT (Cohn, Bromberg and Heywood 2005) first published the idea of using a high octane fuel such as ethanol only as needed to suppress knock while using a lower octane fuel for the rest of a vehicle’s needs in 2005. Their approach involved injecting ethanol directly into the cylinder at high loads for knock suppression and increasing the compression ratio to increase the efficiency of the engine at all operating conditions. The engine would run on gasoline at lower loads where knocking was not present which represents a majority of the time for average driving behaviors. Thus, a small amount of ethanol use was “leveraged” into a much greater savings of gasoline, to the tune of a 30% reduction in overall CO₂ emissions from the gasoline efficiency savings combined with the lower CO₂ from substituting ethanol for gasoline.

The concept of leveraging high-octane ethanol into a greater reduction of gasoline use was applied by Stein (Stein, House and Leone, Optimal Use of E85 in a Turbocharged Direct Injection Engine 2009) to a Ford Motor Company EcoBoost® engine. The engine was modified by adding a PFI system to the DI engine as shown in Figure 16 and by increasing compression ratio to 12:1.
With the results from testing the engine on a dynamometer they simulated in an F150 pickup truck how much E85 would be required for various drive cycles and overall fuel consumption. The study found that only 1% of the total fuel mass was required from E85 on mild drive cycles like the EPA metro-highway (M-H) test cycle, and 16% on more aggressive US06 driving. However, on the very heavily-loaded scenario of driving up the Davis Dam road in Arizona for 10 miles with a fully loaded vehicle and trailer at it’s gross combined weight rating (GCWR) required nearly half the fuel mass to come from E85.

This concept is an example of what has been called “octane on demand.” While octane on demand offers a technically superior solution in terms of CO₂ emissions savings and oil consumption reduction, it has the obvious drawbacks of needing two tanks of fuel on board and requiring vehicle drivers to fill the tanks with two different fuels.
5.3 Higher Octane Floor for US Regular Gasoline

In marked contrast to the octane on demand approach which may be technically superior but has onerous requirements of vehicle operators, there is another approach to improving efficiency and reducing GHG emissions by treating the engine and fuel as a system that is being talked about more openly by automotive OEM executives. That approach makes use of the vehicle efficiency gains stemming from higher octane fuels and moves the onus from the vehicle operator to other stakeholder groups, as seen in part by participation in Co-Optima’s workshops:

- petroleum refining
- biofuels industry
- gasoline retailing

In addition to these stakeholder groups needing to undertake changes to their business operations, the United States government would need to regulate (through the EPA), the changes to the gasoline fuels that would be required for use in future vehicles.

Increasing the octane floor of regular grade gasoline sold across the US in order to take advantage of efficiency gains would require the petroleum refining industry to maintain existing octane ratings of their gasoline blendstocks, as noted by Hirshfeld (Hirshfeld, et al. 2014). Leone (Leone, Anderson, et al. 2015) found that higher octane ratings for regular-grade gasoline are an enabler for higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization technologies and that “increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings.” Furthermore, they state, “higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation,” as shown in Figure 17.

![Figure 17: Engine Efficiency Gains from Increasing Fuel Octane Rating Through Ethanol Content and Compression Ratio Increases for a GTDI Engine with Modest Downsizing (From Leone, 2015)](image)
The biofuels industry would need to take steps to increase the production of ethanol in the US to meet the demand for high octane fuels. Increased production likely would come from both corn starch and cellulosic feedstocks, such as corn stover. Cellulosic biofuels are credited with reducing GHG by at least 60% under the Renewable Fuels Standard (RFS), which would further enhance the lifecycle carbon emissions benefits of a move to ethanol-based high octane fuels. In addition, the gasoline retailing industry would obviously need to ensure the gasoline dispensing equipment is capable of storing and dispensing higher levels of ethanol content in gasoline.

GM and Honda executives said that raising the octane level of pump gasoline in the U.S. is integral to optimizing advanced combustion engines now in development. At the 2016 CAR Management Briefing Seminars Dan Nicholson, VP of Global Propulsion Systems at GM, said, “higher octane fuels are the cheapest CO₂ reduction on a well-to-wheels analysis (SAE International 2016). Fuels and engines must be designed as a total system.” Robert Bienenfeld, Assistant VP of Environment and Energy Strategy at American Honda agreed the industry must push for a higher fuel-octane floor in the U.S. prompting positive comments from EPA Director Chris Grundler, noting that the EPA is participating in the U.S. Dept. of Energy’s Co-Optima program and has a group working on gasoline octane levels of future fuels.

Chow and coworkers at MIT (Chow, Heywood and Speth 2014) also examined the benefits of a higher octane standard gasoline for the U.S. light-duty vehicle fleet and found “ultimately by redesigning vehicles to take advantage of premium gasoline, fleet fuel consumption and GHG emissions can be reduced by 4.5-6.0% (for 98 RON-100 RON, respectively) over the baseline case, where no additional higher-octane vehicles are introduced.”

In a 2017 SAE paper, Darlington (Darlington, et al. 2017) use GHG emissions savings estimates from Leone (Leone, Olin, et al. 2014) for high octane, low carbon fuel (HOLCF) paired with a turbocharged DI engine having it’s compression ratio (CR) increased to take advantage of the high octane mid-level ethanol blend fuels.3 Darlington, 2017 also cite Leone, 2015 and calculate an average benefit level for a 98-RON E25 blend as about 6% for most engines. In terms of vehicle range, Leone, 2014 also found that the 13:1 compression ratio engine gave similar driving range on a 101-RON E30 fuel than the baseline 10:1 engine with regular E10 fuel.

3The results of Leone, 2014 indicate that 96-RON E20 fuel enables an increase from 10:1 to 11.9:1 CR and 101-RON E30 fuel enables a further CR increase to 13.0:1 with GHG benefits of roughly 5% and 6%, respectively, on the EPA city/highway cycle; however on the more aggressive US06 cycle the benefit level grows slightly for the 96-RON E20 but more substantially to 9% for the 98-RON E30.
5.4 Greenhouse Gas Emissions of High-Octane, Mid-Level Ethanol Blends

The DOE (Theiss, et al. 2016) has recently published a summary of its efforts investigating the potential of High Octane Fuel (HOF) with 25-40% ethanol blends. DOE investigators came together from Oak Ridge National Laboratory, National Renewable Energy Laboratory, and Argonne National Laboratory with the objective of providing a quantitative picture of the barriers to adoption of HOF and the highly efficient vehicles it enables, and to quantify the potential environmental and economic benefits of the technology. The results of these studies, considered together, show that HOF mid-level ethanol blends could offer significant benefits for the United States. These benefits include a 5-10% efficiency increase in vehicles designed for increased ethanol content and a miles-per-gallon fuel economy parity with E10.

Furthermore, dedicated HOF vehicles exhibit nearly 15% lower well-to-wheels GHG emissions resulting from increased vehicle efficiency and corn ethanol production and use; future corn stover use shows potential to increase the well-to-wheels (WtW) savings to around 30%, Figure 18. By increasing the percentage of ethanol in the fuel supply, the amount of gasoline consumed decreases, thereby further reducing the nation’s dependency on crude oil imports and enhancing U.S. energy security.

Kwasniewski et al (Kwasniewski, Blieszner and Nelson 2016) also studied the impact on refinery GHG emissions for 10% and 30% ethanol blends with varying octane ratings. The study found that refinery GHG emissions decline 12% to 27% from a 2017 baseline for the
various 30% ethanol cases due to both the extensive effect of lower crude oil throughput and the generally-overlooked intensive effects of differences in the severity of refining operations.

6 ECONOMICS OF HIGH OCTANE FUELS (HOF)

There have been a number of recent studies related to the economics of increasing the octane levels by raising the ethanol content of gasolines sold in the U.S. and also the cost savings produced by HOLCF use in engines with increased compression ratios.

To estimate the cost of a CR increase that is enabled by HOLCF, Darlington, 2017 cite a National Academy of Sciences study (National Academy of Sciences 2015) and average their cost range to get $100 for improved pistons and rings. The savings in fuel cost resulting from the change to HOLCF was estimated at a net present value of $132, and note that the incremental technology cost approximately balances out the fuel saving credit, using a net zero cost to the consumer. In exercising the EPA’s OMEGA model for the impact of HOLCF with high CR engines, Darlington, 2017 found the cost of meeting the model year 2025 GHG emission standards is reduced on a national basis from $23.4B to $16.4B.

Speth and associates at MIT (Speth, et al. 2014) modeled the potential macro-economic effects of transitioning to high-octane (98 RON) gasoline by 2040. They found that if high-octane gasoline in appropriately tuned vehicles accounted for 80% of consumption in 2040, a 3.0–4.4% reduction in total gasoline energy consumption could be achieved. This coincides with a 19–35 metric ton reduction in CO$_2$ emissions in 2040. The direct national economic benefit of using high-octane fuel is estimated to be $0.4–6.4 billion in 2040, and rises to $1.7–8.8 billion if the social cost of avoided carbon emissions is included.

Hirshfeld, 2014 created a model of the refining economics of US gasoline with particular focus on the octane ratings and ethanol content, Figure 19. The model also examined the impacts of these factors on CO$_2$ emissions and crude oil use.
Using their linear programming model, Hirshfeld, 2014 examined two ways of increasing the octane of the finished gasoline: by increasing the octane of the petroleum blendstock for oxygenate blending (BOB) and by increasing the volume fraction of ethanol. As shown in Figure 20, increasing the ethanol content of the finished fuel is the lowest-cost means of achieving a higher RON rating. For example, to achieve a 98 RON standard with only 10% ethanol, the additional refining cost is approximately $0.20/gallon. However, a lower cost approach would be to achieve the 98 RON standard by adding 30% ethanol to the gasoline blendstock to make E30 at an additional refining cost of just $0.02/gallon—ten times less costly than the E10 scenario. Due to the efficiency increases enabled by higher octane fuels and the displacement of petroleum by ethanol, the study also found that using E30 to achieve a 98 RON standard would result in the reduction of refinery CO₂ emissions by 3-10% and the reduction of crude oil throughput for gasoline refining by 3-8% compared to the case where E10 is used to meet the 98 RON standard.
Relevant to the discussion over the economics of potential future high octane fuels is an analysis by the University of Illinois Department of Agricultural and Consumer Economics (Irwin and Good 2017), which looked at the historical economic value of ethanol in the gasoline blend. The authors state that previous analyses of ethanol's economic value have often adjusted the market value to account for the lower volumetric energy content of ethanol relative to conventional gasoline blendstock for oxygenate blending (CBOB). They suggest that while ethanol generally has had a lower absolute price per gallon on average than CBOB, when adjusted for energy content, ethanol has often been more expensive than CBOB. However, one of the factors that has been neglected has been the value of ethanol as an octane enhancer in gasoline. Ethanol replaces costly aromatic compounds that are used to increase the octane of conventional gasoline made with CBOB. These aromatic octane boosters are sold at a significant price premium, called the “octane premium.” An example of these two factors are shown in Figure 21 for the previous 10 year period at the U.S. Gulf.

According to the authors, ethanol’s “octane premium” value has typically offset its so-called “energy penalty” over the past decade, as shown in Figure 24.
The authors calculated that the fuel ethanol contribution to gasoline provided a net cost reduction of nearly $7 billion dollars between 2008 and 2016. As this analysis is backward-looking, it does not consider the further value ethanol will have in increasing the octane of the gasoline blend to enable high compression ratio engines, without significant refinery capital investment to increase octane production.

Moriarty (Moriarty, Kass and Theiss 2014) have evaluated the implications on the gasoline distribution network of introducing high octane fuels containing 25% or more ethanol, identifying deployment issues that remain to be resolved. Fuel dispensing equipment is certified by the UL (UL LLC 2009) and currently available for E10, E25 and E85 fuels through UL 87A pathways. E25 equipment is very close in price to E10 equipment, in fact one manufacturer has stopped offering E10 equipment for sale, but there is a significant cost premium for E85 dispensing equipment. In order for service stations to dispense an E30 or E40 gasoline, some work remains to be done to assure that the appropriately validated dispensing equipment is available and installed. Moriarty, 2014 concluded that E25 would be the easiest and least costly of the high octane fuels to be deployed, because of the limitations of the existing dispensing equipment. The majority of underground tanks were judged to be capable of storing ethanol blends up to E85, but there are concerns that many stations would need to add another tank to add a higher ethanol blend without eliminating an existing fuel. Lastly, the authors thought the largest barrier to implementation of mid-level ethanol blends is that service stations are not required to keep records of their equipment, so that many station owners are not aware of the capabilities of their equipment.
A market analysis was initiated by the DOE Bioenergy Technologies Office as part of a collaborative research program and summarized by Theiss, 2016 which developed eight deployment scenarios for vehicles adapted for use of High Octane Fuels. These scenarios were modeled by the Automotive Deployment Options Tool (ADOPT). Modeling results showed that E40 was the most likely blend to be accepted by consumers because of the lower costs for consumers and the large greenhouse gas emissions reductions for the automakers. This prediction contradicts the Moriarty, 2014 study which focused only on infrastructure implications and found that E25 is the most easily adopted blend because of existing dispenser certification levels. The model further predicted that more than 60% of light duty liquid fuel could be an E40 blend by 2035. More work will be needed to determine the most economically and technically viable pathway for increasing the ethanol content of high octane fuels.

7 CONCLUSIONS

Modern gasoline engines continue to be developed for ever greater fuel efficiency and performance levels, driven principally by light-duty vehicle standards for greenhouse gas emission and fuel economy. This literature review study found that fuel economy is being improved through the parallel pathways of engine boosting combined with downsizing and increased geometric compression ratio combined with modified inlet valve closing strategies. Both approaches, however, are limited by engine knock. The study also found that another technology that would enable further improvements in engine efficiency is the use of high-octane gasolines blended with ethanol. Gasolines having ethanol in the 15% - 40% range can be blended to increase the anti-knock index \(\text{AKI} = \frac{\text{RON} + \text{MON}}{2} \) thereby enabling engine efficiency improvements.

High octane, mid-level ethanol blends have anti-knock qualities that go beyond it's simple AKI rating, however. Ethanol's high sensitivity \(S = \text{RON} - \text{MON} \) and its high heat of vaporization means that engine performance and efficiency can be increased for direct injection (DI) engines more than is indicated by the RON value of the fuel.

The results from the studies reviewed generally support a main conclusion that splash blending ethanol is a highly effective means of raising the octane rating of gasoline and enabling low-cost efficiencies and reduced emissions in modern spark-ignition engines.
8 Bibliography

