Sample Tweets

AP should report the facts, no new grassland has been converted to cropland since 2005.

Farmers increased corn acreage in ’12 & ’13 in response to the drought, not because of #ethanol -http://goo.gl/PKxjT5

Increase in corn acres in ‘12 & ‘13 were through crop switching, not the takeover of new, non-ag land like prairie -http://goo.gl/nA4h6E

Average corn #ethanol reduces #GHG emissions by 34% compared to gasoline, according to the Argonne Nat Labhttp://goo.gl/3JjKNH

AP story ignores the fact that 56 lb bushel of corn = 17 lbs of high protein feedstock & 2.8 gallons #ethanolhttp://goo.gl/9sPGFV

The '10 corn crop was 12% larger than '05, and slightlomore nitrogen was used. USDA shows that nitrogen amt used in '10 was less than '07

Sample Facebook Posts

According to EPA’s latest Greenhouse Gas Inventory, no new grassland has been converted to cropland since 2005 and grassland sequestered 14% more carbon in 2011 (latest data available) than in 1990.

Farmers increased corn acreage in 2012 and 2013 in response to drought-ravaged corn supplies (http://goo.gl/PKxjT5) in 2011 and 2012—not because of ethanol. In fact, less corn was (will be) used for ethanol in both 2012 and 2013 than was used in 2011.

U.S. corn acreage has been higher in the past than it was in 2012 and 2013. In the 1930s, for instance, planted corn acreage averaged 103 m. acres.

The increase in corn acres in 2012 and 2013 has been achieved through crop-switching, not through cultivation of new, non-agricultural lands like prairie. Farmers have reduced plantings of cotton, wheat, sorghum, barley, oats and other crops to accommodate the increase in corn acres. In fact, total cropland continues to trend downward and is roughly 5% lower than levels in the late 1990s.

When all the GHG emissions related to producing corn and converting it into ethanol are tallied, average corn ethanol reduces GHG emissions by 34% compared to gasoline, according to Argonne National Laboratory. This includes all emissions related to...
fertilizer & chemical production and use on the farm, diesel fuel use on the farm, transportation of the corn, energy use by the ethanol plant, transportation of the ethanol to market, and even hypothetical land use change emissions.

The AP story blatantly ignores the fact that each 56-pound bushel of corn processed by an ethanol plant results in 2.8 gallons of fuel and 17 pounds of co-product animal feed. One-third of every bushel destined for ethanol actually returns to the livestock feed market in the form of distillers grains or corn gluten.

When co-product output is properly considered, livestock feed remains the top user of corn by a large margin. For instance, on a net basis, ethanol consumed 27% of the 2012 corn crop, while livestock feed accounted for 50%.

The “best tool available” is to confirm what is actually happening on the ground. Total 2013 corn acres in the states of Iowa, Minnesota, Nebraska, North Dakota, and South Dakota were 9.8 m. acres higher than the three-year average from 2000-2003. However, acres dedicated to wheat, hay, and other crops fell by -11.06 m. acres. This demonstrates that the increase in corn acres was more than offset by the decrease in acres for other crops. No “virgin land” was needed.

The 2010 corn crop was 12% larger than the 2005 crop, so it stands to reason that slightly more nitrogen was used in 2010. Still, USDA data shows that the amount of nitrogen applied in 2010 was down from 2007 and lower than nitrogen use in the early and mid-1980s.