Ethanol and Ground Level Ozone

June 28, 2022

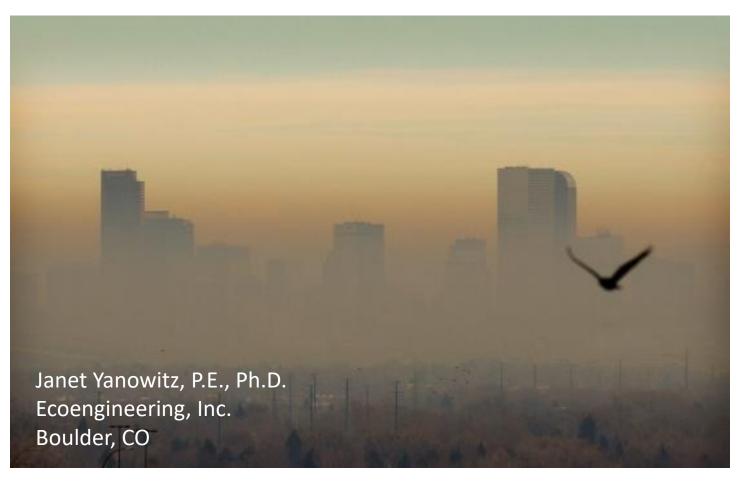
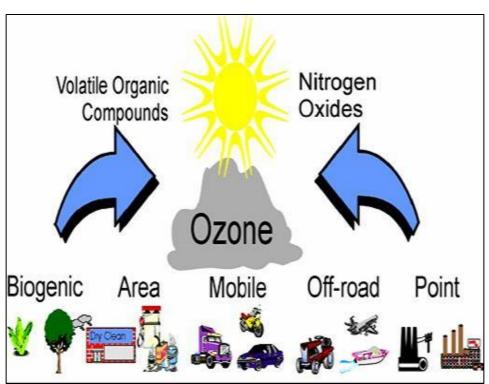
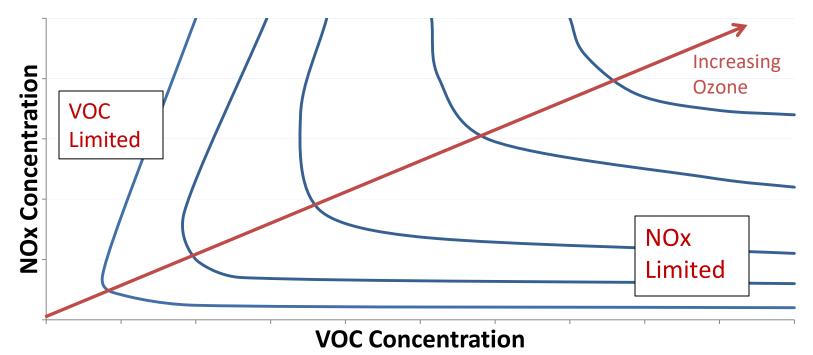


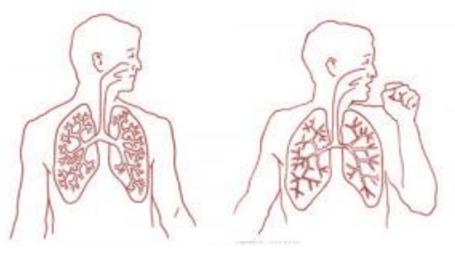
Photo from 2001, published in The Denver Post, July 20, 2020


The Basics

- **Smog** is visible pollution. It can include ozone, nitrogen oxides, sulfur oxides, smoke or particulates
- Stratospheric ozone (around 10 km above the earth) naturally occurring and beneficial – we don't want a hole in it because the ozone layer protects us from dangerous levels of UV radiation.


Ground level ozone is not emitted but forms in the presence of:

- 1. Oxides of nitrogen (NOx)
- 2. Volatile organic compounds (VOC)
- 3. Sunlight


Ozone Isopleths

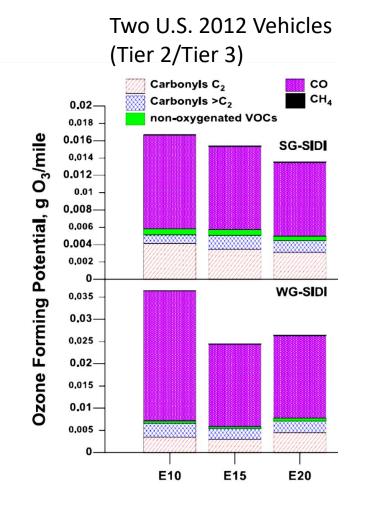
(Blue Lines Represent Constant Ozone Level)

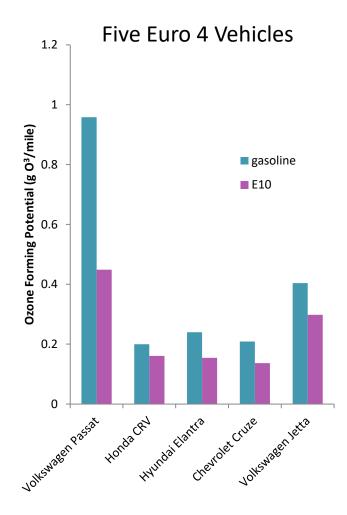
Based on Dodge, M.C., Combined use of modeling techniques and smog chamber data to derive ozone-precursor relationships, Proc. Int'l Conf. on Photochemical Oxidant Pollution and Its Control, Vol II, B. Dimitriades, ed EPA-600/3-77-001b, pp. 881-889. cited in Zannetti, P. <u>Air Pollution Modeling</u>, 1990.

Ozone causes the muscles in the airways to constrict preventing the movement of air in and out of the lungs

- Make it more difficult to breathe deeply and vigorously.
- Cause shortness of breath, and pain when taking a deep breath.
- Cause coughing and sore or scratchy throat.
- •Inflame and damage the airways.
- •Aggravate lung diseases such as asthma, emphysema, and chronic bronchitis.
- •Increase the frequency of asthma attacks.

Ozone Forming Potential


- Not all VOCs are the same: need to consider how fast the organic compound will react and how many molecules of ozone it will create when fully reacted
- Less reactive VOCs may leave the area before forming any ozone
- MIR Maximum Incremental Reactivity most commonly used approach. Reflects total ozone yield over a simulated 24 hour day at low base level of VOCs and high level of NOx.


MIR

MIR (g of ozone/g of compound)		
Methane	0.014	
Ethane	0.26	
Ethene	8.76	
Benzene	0.69	
Acetaldehyde	5.5	
Ethanol	1.45	
Carbon monoxide	0.053	
CARB gasoline evap. emissions https://www.arb.ca.gov/fuels/gasoline/premodel/pmdevelop.htm	Approx. 3	

Carter, W. P. L., Updated Maximum Incremental Reactivity Scale and Hydrocarbon (2006)Bin Reactivities for Regulatory Applications, prepared for CARB, June 22, 2009, www.arb.ca.gov/research/reactivity/mir09.pdf.

Ozone Forming Potential from use of Ethanol-Containing Fuels

Test Results: Tailpipe Emissions E15 vs E10

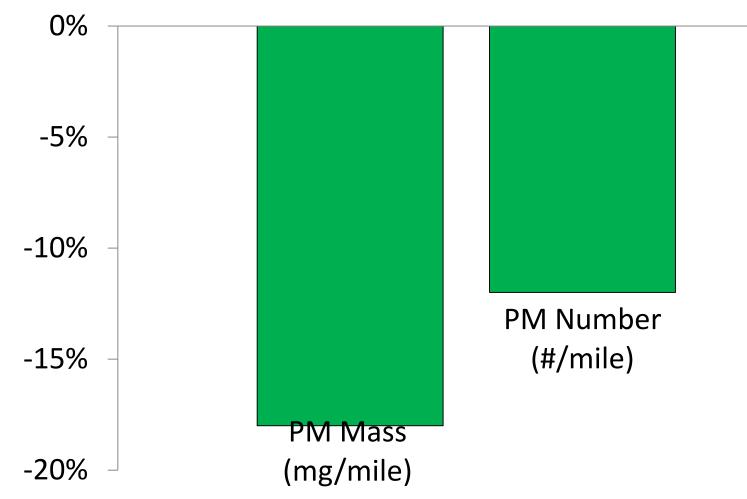
UC RIVERSIDE Center for Environmental Research and Technology

- Testing conducted in 2021
- 20 common vehicles selected by California ARB based on registration data
- E10 blended from 4 California retail sources
- E15 blended from E10 + additional ethanol

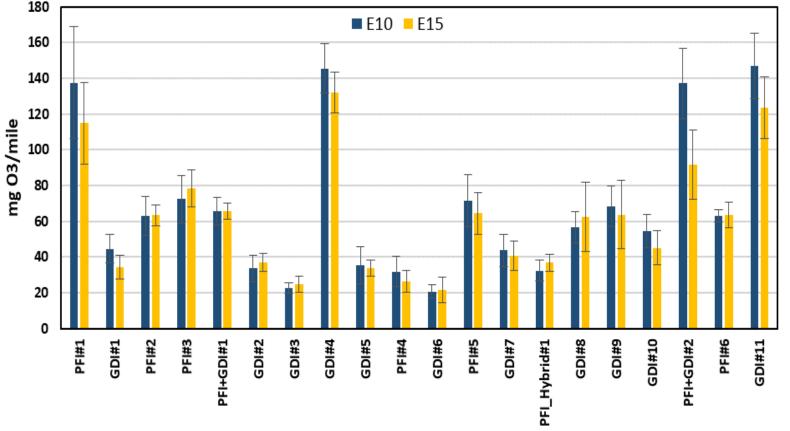
Technology			
Group	ΜΥ	Make	Model
	2019	Chevrolet	Impala
	2018	Honda	Fit
	2018	Jeep	Cherokee
	2017	Mazda	Mazda 3
SULEV 30	2016	Toyota	Prius
	2020	Hyundai	Accent
	2019	Chevrolet	Suburban
	2018	Honda	Civic 4DR
	2018	Nissan	Armada
ULEV 125	2017	Ford	F150 4WD
	2020	Ford	Fusion FWD
	2019	Dodge	Ram 1500
	2018	Kia	Optima
	2017	Chevrolet	Spark
ULEV 70	2016	Nissan	Rogue
	2020	Buick	Enclave
	2020	Jeep	Compass
	2019	Chevrolet	Colorado
	2019	Toyota	Rav4
ULEV 50	2018	GMC	Acadia

9

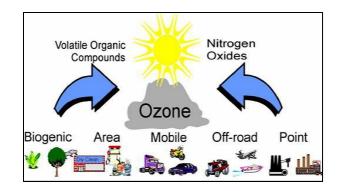
% Change between E15 and E10 Least Square Means

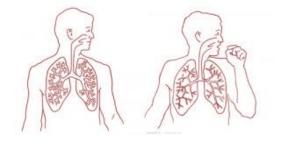

Karavalakis et al., Final Report ,Comparison of Exhaust Emissions Between E10 CaRFG and Splash Blended E15, January 2022

10


% Change between E15 and E10 Least Square Means

Karavalakis et al., Final Report , Comparison of Exhaust Emissions Between E10 CaRFG and Splash Blended E15, January 2022




CE-CERT found Ozone Forming Potential of Emissions "trended lower with E15".

Karavalakis et al., Final Report ,Comparison of Exhaust Emissions Between E10 CaRFG and Splash Blended E15, January 2022

1. Ozone has significant human health impacts.

2. Ozone forms in the presence of VOCs, NOx and sunlight and produces visible pollution.

MIR (g of ozone/g of compound)			
Methane	0.014		
Ethane	0.26		
Ethene	8.76		
Benzene	0.69		
Acetaldehyde	5.5		
Ethanol	1.45		
Carbon monoxide	0.053		
CARB gasoline evap. emissions	Approx. 3		

Not all VOCs are the same
some result in more ozone
than others.

4. Recent testing shows E15 will not increase NOx or ozone forming potential in tailpipe emissions and will reduce PM and CO in comparison to fuels containing less ethanol.

