Ethanol and the Economics of Octane The Superior Solution

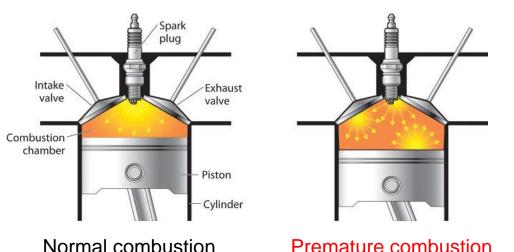
Geoff Cooper Renewable Fuels Association

October 20, 2017

Today's Presentation

- What is octane and why is it important?
- Options for boosting octane in gasoline
- Ethanol's octane advantage
- The economics of octane

What is Octane?


- Spark-ignition gasoline engines work by compressing an air-fuel mixture and then igniting the mixture (with a spark plug) at a specific instant during the cylinder's compression stroke.
- A fuel's octane number is the standard measure of its ability to resist pre-ignition (or "knocking") in the cylinder of a gasoline engine.

Chevrolet LT4

Higher Octane = More Knock Resistance

- Pre-ignition occurs when there is too much pressure in the combustion chamber and the air/fuel mixture is incorrect.
- This causes uneven combustion and "knocking," which can lead to poor performance and engine damage.
- The higher the octane number, the more compression the fuel can tolerate without pre-igniting.
- Engines with high compression ratios require high octane gasoline.

Measuring Octane

Knock resistance at low-load operations (e.g., highway driving)

Posted on pump in most of the world (e.g., Europe and Asia)

- Knock resistance at high-load (e.g., acceleration, hauling)
- MON is always less than RON

RON

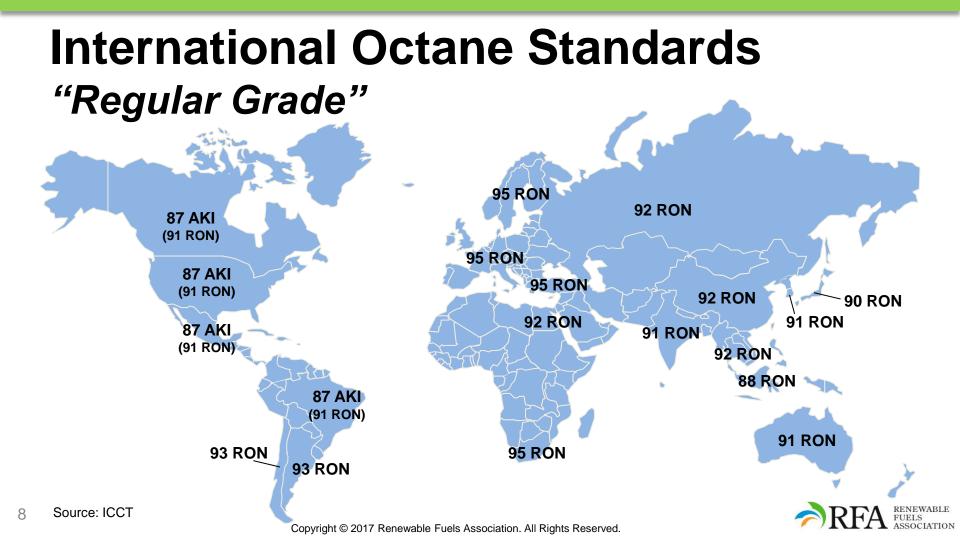
MON

- <u>Anti Knock Index...also called (R+M)/2</u>
- Equal to (RON + MON)/2
- Posted on the pump in North America

Pure Component Octane Versus Blending Octane

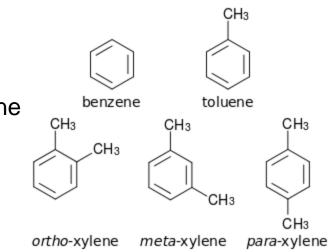
- Pure component octane:
 - Anti-knock performance (RON or MON) of an individual, pure compound by itself
- Blending octane:
 - Anti-knock performance (RON or MON) of a blending compound when it is a component of a gasoline blend

U.S. Octane Standards for Finished Gasoline

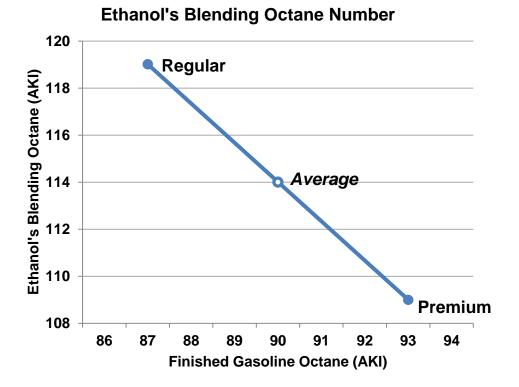

Octane standards in the U.S. are set by individual states.

Gasoline Grade	AKI
Premium	91-93
Mid-grade	89
Regular	87

Note: Octane standards are about 2 AKI points lower in some states in the High Plains and Rocky Mountain region.

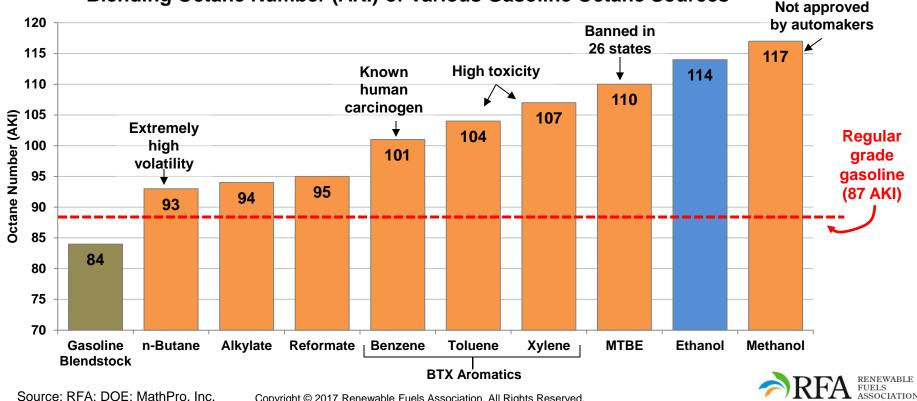

Octane and Gasoline Blending

- The "naturally occurring" octane in the crude oil fractions that become gasoline is far less than what engines need.
- Refiners "create" the additional required octane by:
 - Carrying out chemical processes that "upgrade" low-octane hydrocarbon molecules into high-octane molecules; and/or
 - Purchasing and blending high-octane blendstocks.
- Making octane in the refinery is costly and energy intensive.
- Refiners must balance octane needs with other specifications and properties.
 - e.g., volatility, sulfur content, benzene content


Key Hydrocarbon Refining Octane Sources

- Alkylate
 - Blending octane = 93-95 AKI
 - Low volatility, no sulfur, no benzene
- Reformate
 - Blending octane = 87-100 AKI
 - Low volatility, some sulfur, contains benzene
- Aromatics (Benzene, Toluene, Xylene)
 - Blending octane = 94-107 AKI
 - Upgraded from reformate
- Butane
 - Blending octane 92-94 AKI
 - Very high volatility

Ethanol's Octane Advantage



- Ethanol's pure component octane number is **100 AKI**.
- But it's blending octane number is **109-119 AKI**, depending on the octane of the finished fuel.
- Ethanol's blending octane number is highest when used with lower-octane hydrocarbon blendstock.

Ethanol's Octane Advantage

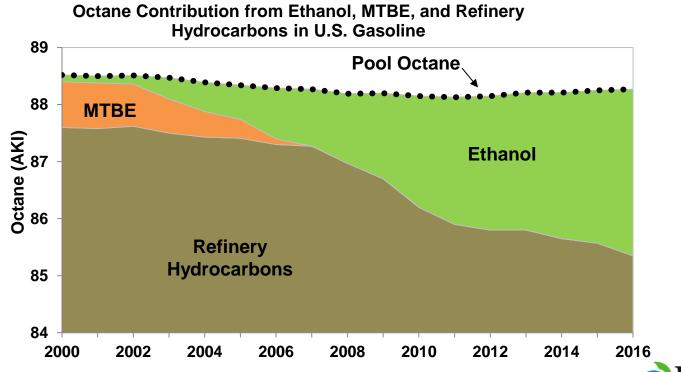
Blending Octane Number (AKI) of Various Gasoline Octane Sources

Copyright © 2017 Renewable Fuels Association. All Rights Reserved.

12

Ethanol Blending in the Past

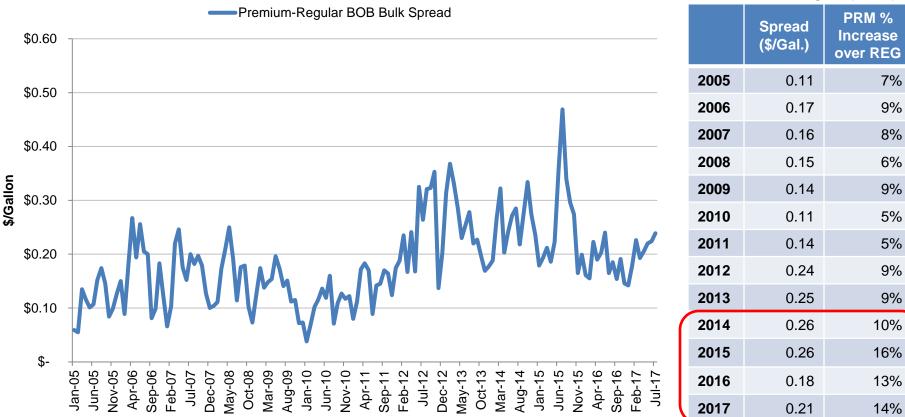
- Prior to circa 2002, ethanol was used mainly as a volume extender not as an octane enhancer.
 - Refiners did not assume gasoline would be blended with ethanol downstream.
 - Gasoline (E0) leaving the refinery already met state octane specifications.
 - Ethanol was "splash-blended" far downstream of refinery in some locations (mostly Midwest).
 - Result of "splash-blending" was gasoline with more octane than required to meet specifications for "regular grade."


Ethanol Blending Today

- Regulations and policies significantly expanded the use of ethanol in 2002-2010 timeframe.
 - Winter oxygenated gasoline; Reformulated gasoline; State MTBE bans; RFS
- By 2010, most gasoline in the U.S. blended with 10% ethanol.
- Thus, refiners reconfigured operations to capture ethanol's octane benefit and avoid octane "give-away."
 - Began widespread production of sub-octane gasoline Blendstocks for Oxygenate Blending (BOBs) designed for blending with 10% ethanol
 - BOB + Oxygenate = Finished Fuel

	Blending Octane (AKI)	Share of Blend	Octane (AKI)
Regular grade BOB	84	90%	75.5
Ethanol	<u>117</u>	<u>10%</u>	<u>11.7</u>
Finished E10			87.2

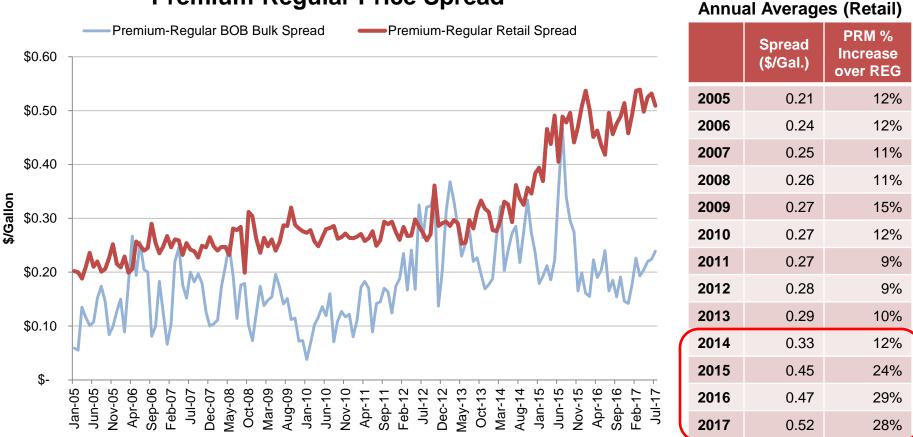
Ethanol has rapidly emerged as a significant source of octane in U.S. gasoline



15 Source: MathPro, Inc.

The Economics of Octane

- What is the economic value of octane?
 - A common measure used in the U.S. is the "Premium-Regular Bulk Spread"
 - Difference between bulk spot prices for premium (90 AKI) and regular grade (84 AKI) gasoline BOBs
 - (PRM REG)/6 pts AKI = value per AKI point of octane
 - Considered by refiners to represent the market value of octane
 - Good indicator of refining cost to produce incremental octane



Premium-Regular Price Spread

Annual Averages (Bulk)

Premium-Regular Price Spread

18 Source: EIA

Copyright © 2017 Renewable Fuels Association. All Rights Reserved.

FA RENEWABLE FUELS ASSOCIATION

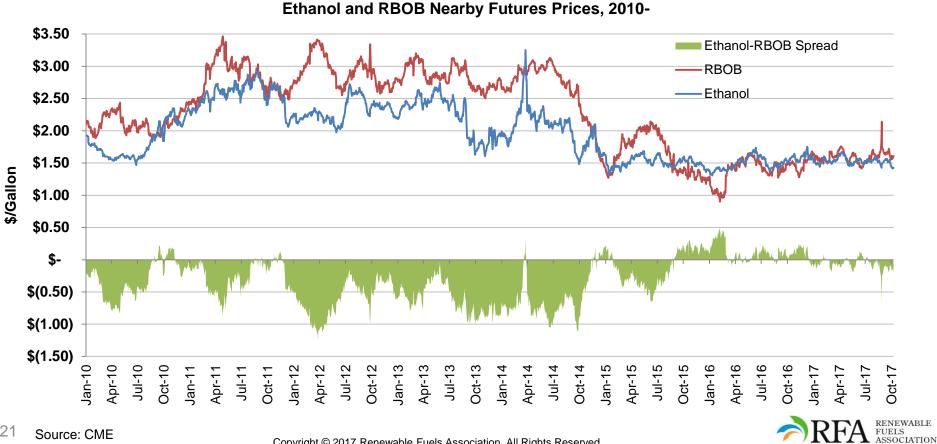
Value of Incremental Octane

Value per Point of Octane (AKI) based on Bulk Prices

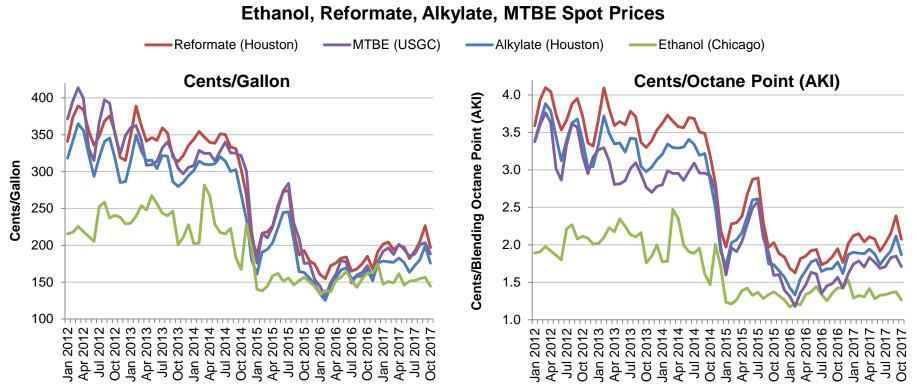
- Based on current
 Premium–Regular BOB
 bulk spread, each point
 of incremental octane
 (AKI) is worth 3.5 cents
 per gallon to the refiner
- Ethanol's current theoretical octane value is \$1.05/gallon over 84 AKI BOB price!
 - (114 84) x 3.5 cpg

19

Copyright © 2017 Renewable Fuels Association. All Rights Reserved.

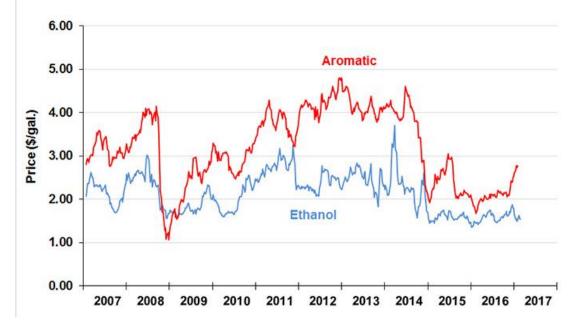

Why is the Value of Octane Increasing?

Constrained Supply	Increased Demand	Premium Share of Total U.S. Gasoline Sales
 Increased volume of light tight oil (LTO) and condensate Produces lower quality gasoline blendstock (more low-octane naptha) Octane loss from tighter 	 Higher domestic demand for <i>all</i> gas grades Demand for premium is rising (as share of total) Higher compression and turbo charging Increased export 	16% 12% 8% 4%
 sulfur standards Refining industry slow to add octane-producing capacity 	demand for gasoline and high-octane blendstocks	Jan-92 - Jan-92 - Jan-92 - Jan-96 - Jan-96 - Jan-06 - Jan-06 - Jan-06 - Jan-10 - Jan-12 - Jan-12 - Jan-16 - Jan-17 - Jan-16 - Jan-16 - Jan-17 - Jan-16 - Jan-17 - Jan-16 - Jan-17 - Jan-16 - Jan-17 - Jan-17 - Jan-17 - Jan-17 - Jan-17 - Jan-16 - Jan-17 - Jan



20 Source: EIA, MathPro, Inc.

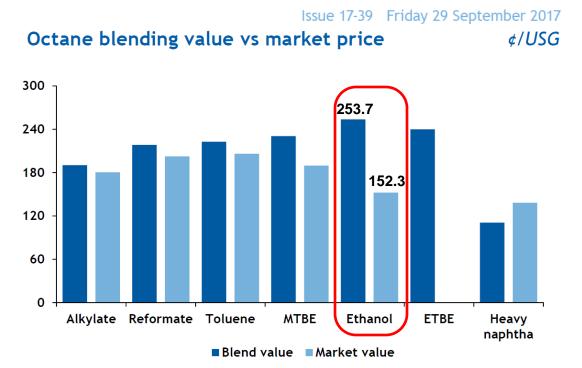
Ethanol Consistently Priced Below RBOB Gasoline



Ethanol Priced Far Below Other Octane Sources

Ethanol Priced Far Below Other Octane Sources

Figure 6. Weekly (Thursday) Wholesale Average Aromatic and Ethanol Price at the U.S. Gulf, 01/25/2007 - 02/02/2017


- University of Illinois analysis compares ethanol prices to an average price for the BTX aromatics from 2007-2017.
- "Over the entire period, the price premium of the aromatics relative to ethanol averaged \$1.06 per gallon."

Source: Irwin, S., and D. Good. "On the Value of Ethanol in the Gasoline Blend." farmdoc daily (7):48, Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign, March 15, 2017.

Ethanol Priced Far Below Other Octane Sources

- Argus reports weekly market prices and a calculated "octane blending value" for various octane sources.
- In addition to octane number, the "octane blending value" formula takes into account energy density, RVP, and other important blending factors.

Proof of the Ethanol Advantage

- QuikTrip station in Kansas on April 7, 2017
- 87 AKI ethanol-free gasoline priced 20% above 87 AKI E10 and just 1.5% below 91 AKI premium E10!

- Buc-ee's station in Texas on June 27, 2017
- 87 AKI ethanol-free gasoline priced 53% above 87 AKI E10 and 22% above 93 AKI premium E10!

Summary

- Octane is a critical consideration for efficient operation of spark-ignition engines
- Refiners can meet octane standards by "creating" octane at the refinery or purchasing octane boosters from other sources
 - Producing octane at the refinery is costly and energy intensive
- Demand for octane is increasing globally; supply is tightening
- Ethanol is a superior octane booster due to its:
 - Extremely high RON and blending octane numbers;
 - Economic competitiveness; and
 - Benign effects on the environment and human health

