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1 Introduction

While the food versus fuels issue was introduced to the economic literature already by Barnard (1983) at
the onset of the modern biofuels era and by Rajagopal et al. (2007) right before the world food crisis of
2007/2008 and while the most influential paper on this topic was Mitchel (2008), the most cited article
dealing explicitly with the relationship between prices of biofuels and related fossil fuels and agricultural
commodities is Zhang et al. (2010). In our paper, we replicate and extend their results.

The main result of Zhang et al. (2010) has been the absence of long-run price relations between the
fuel and agricultural commodity prices, and a very limited short-run relationships. Even though we use
essentially the same econometric techniques as Zhang et al. (2010), we perform additional testing and we
include a step-by-step guide how to approach such analysis in this specific setting, allowing for possible
future replication of our own results. In addition, we significantly extend the data set both in time and
in the number of covered commodities. In the replication part of our article, we confirm the Zhang et al.
(2010) results that there is no strong statistical evidence that ethanol would drive food prices or vice versa
in the period between 1989 and 2008. However, in the extension part of our paper, we find statistically
significant co-movement between time series of prices of biofuels and the related food commodities.

The results obtained in our paper are time and market dependent. Therefore, our major conclusion is
that Zhang et al. (2010) analysis provides a good characterization of the U.S. ethanol market in the period
up to the world food crisis. With the full development of the U.S. ethanol market, which coincides with
the 2007/2008 world food crisis, we observe a fundamental change in the relationship between the prices of
fossil fuels, agricultural commodities and biofuels. While the development of biofuels facilitated this price
transmission on the U.S. ethanol and the European biodiesel markets, on the Brazilian ethanol market,
which had reached the stage of mature development already before 2008, the ethanol leads short-run
changes in sugar price quite strongly both in the pre-crisis and post-crisis periods.

The replicated article of Zhang et al. (2010) belongs to a series of research agenda-defining papers
(Zhang et al., 2007, 2008, 2009, 2010) dealing with biofuels related price co-movements. This early price
transmission literature is reviewed by Serra and Zilberman (2013) and Zilberman et al. (2013). More recent
comprehensive literature reviews of the food versus fuels debate are provided by de Gorter et al. (2015)
and by Hochman and Zilberman (2016). In our article, we present a structured review of the relevant
literature in Tab. 1.

The rest of the paper is organized as follows. Section 2 describes the utilized methodology (cointe-
gration and vector error-correction model) in detail. Sections 3 and 4 introduce the original dataset and

replicate the results of the original study. Sections 5 and 6 present the expanded dataset and its results



for three time periods (before, during and after the world food crisis) and three biofuel markets (the U.S.,

the EU and Brazil). Section 7 concludes.
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2 Methodology

We follow the procedure of Zhang et al. (2010) and utilize the vector error-correction model to study both
the long-term relationship represented by the cointegration relationship and the short-term connections
represented by the lagged variables in the vector autoregression representation. More details can be found

in the Appendix. We specifically use the representation of Hendry and Juselius (2001):
AX; = pAX: 1 +afBXi 1 +apu+ v+ apt + 0t + € (1)

Defining 7 = ap + v and § = ap + 7, we obtain five possible cases:
1. no restrictions on 7 and 4, i.e. the trend and intercept are unrestricted;
2. 7 = 0 but v, 4 and p remain unrestricted, i.e. the trend is restricted to lie in the cointegration
space;
3. § =0, i.e. there are no linear trends in the differenced series and the constant term is unrestricted;
4. 6 =0,v=0but u # 0, i.e. the constant term is restricted to lie in the cointegration space;
5. d =0 and m =0, i.e. the model excludes all deterministic components.

Correct identification of one of the above cases is crucial for obtaining meaningful results. For more details,
theoretical background and caveats, please refer to Banerjee and Hendry (1992), Ericsson et al. (1998),
Hendry and Juselius (2001), Juselius (2006) and Hoover et al. (2008).

The procedure of finding a correct model can be rather complicated. To ensure that each model we

consider here is treated on the same grounds, we apply the following step-by-step procedure!:

1. Test for unit roots in the original data with the lag selection based on the Bayesian information
criterion (Schwarz, 1978) with the maximum lag of 12. If the series are unit roots, we can proceed.
If the time trend needs to be added into the model, it suggests the unrestricted trend version of the

original model.

2. Find the optimal number of lags by estimating Eq. A.5. The selection is again based on the Bayesian

information criterion (BIC), i.e. parsimony is preferred, with the maximum lag of 12.

3. Check whether the time trend is significant (utilizing the heteroskedasticity and autocorrelation

consistent (HAC) standard errors) in the model estimated in the previous step. If the time trend is

LAll the models and procedures are estimated in gretl 1.9.92 and RStudio 1.0.136. The following
step-by-step guide ensures that these can be easily replicated.
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significant in the model, we consider either the restricted trend or unrestricted trend version of the

final model.
4. Run the Johansen test (both trace and L,,q.) for preselected specifications (Johansen, 1991, 1995).

5. Estimate a specific version of the vector error-correction model with setting according to the previous

steps.

6. Test the error-correction terms of the final model for unit roots. If these are rejected, we arrive at

the final model.

After arriving at the final model, we can comment on interconnections (both short-term and long-term)
between series using the standard procedures such as the Granger causality and forecast error-variance
decomposition so that we can compare our results with the original ones of Zhang et al. (2010) and later

extend them.

3 Original dataset

The original dataset of Zhang et al. (2010) contains the monthly prices of crude oil, gasoline, ethanol,
corn, soybeans, wheat, sugar and rice between March 1989 and July 2008. We are thankful to the authors
for providing us with the original series of crude oil and gasoline but the rest of the dataset is proprietary
and could not be shared. Therefore, we have been forced to collect the data from various other sources.
Eventually, we have been able to get the same time series (the same data specifications) as in the original
paper. The analyzed series are listed and described in Tab. 2. The data sources are quite broad and we
have utilized neo.ne.gov, quandl.com, koema.com and indexmundi.com to get the whole dataset?. To check
whether the obtained series are close to the ones of the original dataset, we compare the basic descriptive
statistics of the series presented in Zhang et al. (2010) and ours in Tab. 3. The comparison shows that
the series are not exactly the same but very close so that the results should be easily comparable.

Tab. C.1 presents the results for the Augmented Dickey-Fuller test (Dickey and Fuller, 1979) for
logarithmic prices and their first differences. We stick to the logarithmic transformations as these are
closer to the Gaussian distribution as shown in Tab. 3 using the Jarque-Bera (J-B) test (Jarque and Bera,
1981) and to follow the original study. The results are quite straightforward® as all but one logarithmic

price series are detected as unit roots. Only for the soybeans series, the time trend needs to be included

2The dataset is provided in a separate file attached to this paper.
3The outcomes have been confirmed by the ADF-GLS tests as well (Elliott et al., 1996; Elliott, 1998).
The same is true for the ADF tests on the expanded dataset later.
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to get the unit root. This suggests that there might be a need for the trend effect in the cointegration
relationship. After first differencing, the unit root is rejected for all the series. Therefore, we can proceed
with the cointegration testing. Note that the soybeans issues are not present in the original study of Zhang
et al. (2010) which only confirms that the datasets are not exactly the same. Again, this should not limit

our replication as the soybeans series is unit root after controlling for the time trend.

4 Replication results

Following the steps of the procedure listed above, we proceed with finding the optimal lag of the VECM
model of Eq. A.5. For the original dataset, an optimal lag of one is detected for both models with
and without a time trend. In Zhang et al. (2010), the optimal lag of four is used based on the Akaike
information criterion (AIC) (Akaike, 1974) and Final Prediction Error (FPE) (Ljung, 1999). It is not
surprising that BIC delivers lower optimal lag as it prefers parsimony over overfitting. Nevertheless, the
authors note that the results they present are practically the same regardless choosing four lags or one.
For our estimation, the time trend is statistically significant for the oil and sugar series which leads to the
model with (possibly restricted) time trend.

The Johansen tests in Tab. 4 suggest five cointegration vectors which is in hand with the original
analysis of Zhang et al. (2010). Tab. C.2 shows that the error-correction terms of the VECM do not
contain unit roots. These results are valid for the VECM with the restricted time trend and one lag
in the short-term components. Note that the unit root of the error-correction terms is not rejected for
the unrestricted trend model variant. This confirms that our model selection is valid. It is not possible
to directly compare the final model we have arrived at with the one of the original study as it is not
explicitly stated which of the five variants of the VECM is used in the original study. However, based on
an inspection of the presented results (primarily Tab. Al and Egs. la-le of the original paper), it seems
that the final model of the original study includes an intercept in the cointegration relationship but no
time trends anywhere which yields the VECM with the restricted constant, i.e. the case number four in
our list. Time trends seem to be not tested for at all in the original paper of Zhang et al. (2010).

The Granger causality tests of the original study find several causal pairs. Even though the test
specifications are not clear, we stick to the standards and apply the Toda and Yamamoto (1995) test
for the long-run causality and joint significance tests of the short-term VAR components of the VECM
for the short-run causality. The original study finds a bidirectional causality between gasoline and crude

oil, which is in hand with expectations (Baumeister et al., 2017). Then there are several unidirectional
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causalities — from gasoline to ethanol, from sugar to oil, from sugar to corn, from sugar to soybeans, from
sugar to wheat, from sugar to rice, and from soybeans to corn and rice. This shows a rather unexpectedly
strong role of the sugar prices in the system, and also quite unexpectedly weak role of crude oil. Crude
oil Granger causes gasoline prices, which is not surprising, but it is also caused by gasoline and sugar.
In Zhang et al. (2010), this strong role of sugar in the whole system is attributed to it being a proxy for
economic indicators. In our replication and extended study as well, we add more variables into the system
to control for such effects. Quite interestingly, the dominant role of sugar is not reflected in the forecast
error variance decomposition (FEVD) presented in the original paper as the contribution of sugar shocks
towards other variables never exceeds 10%. The only markable contribution off the diagonal is the one of
oil towards gasoline as oil contributes around 80% towards the gasoline variance*. Apart from this one, the
cross-effects are minute, i.e. there is no interesting interaction between ethanol and either its producing
factors or crude oil or gasoline.

Replicating these results, we also find several pairs with statistically significant Granger causality but
these are mostly different from the ones in the original analysis. For both short-run and long-run causality
tests, the optimal number of lags is detected to be one (with respect to BIC). In the long-run, wheat
causes gasoline and oil, gasoline causes ethanol and wheat, sugar causes soybeans and wheat, and ethanol
causes wheat. In the short-run, wheat causes gasoline and oil, rice causes oil, sugar causes soybeans, corn
causes wheat, and ethanol causes wheat, i.e. most of the short-run causalities overlap with the long-run
ones. Nevertheless, the trouble with crude oil being Granger caused by agricultural commodities remains.
We attribute this to an under-identification of the original model and possibly endogeneity issues, or more
precisely the omitted variable bias. There surely are other variables that might be important for the
system dynamics and are not included in the estimated model. Therefore, it would be helpful to enlarge
the dataset.

As for the forecasting error variance decomposition (FEVD), the results cannot be directly replicated
as the original paper does not state the variables ordering (Cholesky factoring) which plays an essential
role in the final FEVD (Gentle, 1998). We proceed with the FEVD based on the generalized VAR as
proposed by Pesaran and Shin (1998) and further developed by Dees et al. (2007) and Diebold and Yilmaz
(2012), which does not require specific ordering and it is thus robust to errors due to incorrect ordering®.

In Tab. 5, we present the results of the forecasting error variance decomposition based on the VECM

4We stick to the presentation of the original paper which shows the forecasting error variance decom-
position after five periods (months).

SFor a detailed procedure and code, please refer to Barunik and Krehlik (2015) and the appended
R-package.
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specification with restricted trend and one lag of the VAR terms. Our results show that all the agricultural
commodities react mostly to their own shocks (with the proportion around 80% and more), i.e. there is
strong autocorrelation present in their variance process with only weak cross-correlation effects. Similarly
to the original study, we find that gasoline responds to the oil shocks quite strongly (43% compared to
78% in the original study) but also ethanol reacts to oil (22% compared to 15% in the original paper) and
gasoline (over 5% compared to 4% in the original study). Other than these, there are no effects exceeding
10%. From the perspective of the main question of the original paper, i.e. whether there is a strong link
between ethanol and related agricultural commodities, the results of the original paper and our replication
suggest the same — there is no strong connection between them and there is no strong statistical evidence

that ethanol would drive food prices or vice versa.

5 Expanded dataset

Since the publication of the Zhang et al. (2010) article, the availability of the biofuels-related data has
improved markedly. Even though the data coverage does not (or even cannot) go too far into the past,
the coverage improves substantially for the more recent years. To further expand on the results of the
replicated paper, we provide a similar study conducted on a considerably enlarged dataset. Namely, we
cover the three largest biofuel markets — Brazil (ethanol), the EU (biodiesel), and the USA (ethanol).
For these markets, we have collected a comprehensive dataset (unprecedented in the topical literature) of
weekly nominal prices of biofuels, its producing factors (agricultural commodities), crude oil and competing
fossil fuels as well as relevant financial variables. This gives us a total of 26 series covering the period
between Nov 24, 2003 and May 16, 2016. Specifically for these three markets, we covered the following
time series:

e biofuels: Brazilian ethanol, EU biodiesel, US ethanol

e crude oil: Brent, WTI

e (competing) fuels: Brazilian gasoline, EU diesel, US gasoline

e stock indices: DJI, S&P500, FTSE100, DAX, BOVESPA

e interest rates: Fed Fund rates, LIBOR

e cxchange rates: USD/EUR, USD/BRL

e biofuels-relevant agricultural commodities: corn, wheat, sugarcane, sugar beets, Brazilian sugar,

soybeans, sunflower, rapeseed, palm oil
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The data has been obtained from Bloomberg, Thomson Reuters Eikon, Centro de Estudos Avancados
em Economica Aplicada (CEPEA), US Energy Information Administration (EIA), National Agency of
Petroleum, Natural Gas and Biofuels — Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis
(ANP Brazil), US Federal Reserve, European Central Bank (ECB), and ECONSTATS databases®. Detailed
description of the dataset and its sources is provided in Tab. 6.

In order to account for episodes of various market environments, we split the whole period into three
subperiods. As a benchmark for the division, we use the FAO Food Price Index — a weighted average of
five commodity group price indices. Upward sloping values of the index culminated during the 2007-2008
world food crisis with the index value peaking in June 2008. Subsequently, the agricultural prices fell,
bottoming in September 2009 before catching up again for a new food commodity prices rally. The index
reached its new peak in February 2011 followed by a stable price decrease. We set the two index peaks
to be the breaking points. Our dividing points exactly correspond to the World Bank terminal points of
the two global food crises in 2008 and 2011. As summarized by Cuesta et al. (2014), the World Bank
developed a methodological approach to identify a situation leading to a potential food crisis. To check
whether the two breaking points are in fact empirically valid, we utilize the methodology of Joyeux (2007)

for each market. The breaking points are confirmed?”. This finally gives us three subperiods:
e Period I: November 24, 2003 - June 30, 2008
e Period II: July 7, 2008 - February 28, 2011
e Period III: March 7, 2011 - May 16, 2016

As earlier demonstrated by Kristoufek et al. (2012), Vacha et al. (2013), Kristoufek et al. (2016) and
Filip et al. (2016), the effect of time development seems to be crucial. These earlier studies of ours have
repeatedly found a causal relationship between prices of biofuels and their production factors. However,
these relationships experience a notable development in time. Thus, we believe that extending the original
paper both in terms of data and time frame coverage may considerably contribute to the quality and

correct interpretability of the obtained results.

5The extended dataset is provided in a separate file attached to this paper.

"Specifically, we extend Eq. 1 by adding dummy variables for the breaking points and also the interac-
tion term dummies with the time trend. For each market, the optimal lag based on the BIC is identified as
one. The null hypothesis of the specified dates not being the breaking points is confidently rejected with
x2(28) = 136.20 (p < 0.0001) for Brazil, x?(40) = 175.37 (p < 0.0001) for the EU, and x?(40) = 154.86
(p < 0.0001) for the US.
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6 Results

We follow the same procedure of model selection and following analysis as for the original dataset. As the
new dataset has been markedly enlarged, we now estimate three models — for the EU biodiesel, US ethanol,
and Brazilian ethanol — for three separate periods — before, during, and after the food crisis which gives
nine models in total. The model specification procedure is described in the Appendix and the resulting

models are summarized in Tab. 7.

6.1 Short-term dynamics

Short-term interactions between series are easily uncovered using the Granger causality test in the VAR
specification of the VECM model (if the cointegration relationship has been found) or in VAR itself (for
no cointegration found). The results of the short-run Granger causality tests are summarized in Tabs.
C.4-C.6. The tables summarize results for all three markets and all three analyzed periods. Specifically,
the p-values of the Granger test are reported. In fact, as the optimal lag size has been detected as one
for all the models and all the periods, these are in fact p-values for t-statistics in the VAR models. For a
better orientation in the tables, we report only the p-values that are lower than 0.1, i.e. only when the
“no Granger causality” null hypothesis is rejected at at least 90% significance level. Otherwise, “x” is
reported. Also, to stick to the motivation of the original paper, we report only the pairs where either a
biofuel or its producing factor is affected/caused by another variable in the specific market.

For the EU biodiesel market (Tab. C.4), we find that the results vary across the time periods and there
are several interesting findings on the short-term interactions. First, biodiesel is Granger caused by at least
one of its producing factors in each period. The strongest evidence is found during the post-crisis period
when biodiesel is strongly driven by sunflower and rapeseed. The weakest short-term interactions between
biodiesel and its producing factors are found for the food crisis where only palm oil causes biodiesel but
only at the 90% significance level. Second, the biodiesel producing factors interact between one another
quite frequently. The least interacting food factor is palm oil. Third, the producing factors are quite
strongly affected by Brent crude oil prices (this is true for soybeans, rapeseed and palm oil in the pre-crisis
period) and the stock markets (this is true for soybeans, sunflower and rapeseed in the pre-crisis period).
Third, the effect of biodiesel price changes towards its producing factors is rather limited and there are
only two commodity/period combinations when the effect is statistically significant (for rapeseed before
the food crisis and for palm oil in the post-crisis period).

The results are more straightforward for the US ethanol market (Tab. C.5). Ethanol is driven by corn
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(its main US producing factor) in the pre-crisis and crisis period. However, this short-term effect vanishes
after the food crisis. The ethanol producing factors are primarily driven by other economic/financial
variables, i.e. WTI crude oil, gasoline, stock market, and exchange rates (this is true mainly for the
pre-crisis and crisis periods). There is no strong evidence of ethanol causing changes in its producing
factors.

For the Brazilian ethanol market (Tab. C.6), there is no evidence of sugar driving the dynamics
of ethanol in the short-term. On the contrary, ethanol leads changes in sugar prices quite strongly (the
evidence is found for the pre-crisis and post-crisis periods). For sugar prices, the currency strength evidently

plays a strong role as well.

6.2 Long-term dynamics

To analyze the long-term connections between commodities, we follow the steps of the Zhang et al. (2010)
study and, in addition to the long-run causality tests, we also provide the results for the forecasting
error-variance decomposition. For each market, we primarily focus on the results for biofuels and their
producing factors. The results of the long-run Granger causality tests based on the methodology of Toda
and Yamamoto (1995) are summarized in Tabs. C.4-C.6. For the EU biodiesel market (Tab. C.4), the
long-run dynamics is quite similar to the short-run dynamics as biodiesel prices are driven by at least one of
its producing factors in each of the studied periods. In addition, biodiesel is also strongly driven by Brent
crude oil and diesel prices before and during the food crisis. The food commodities are strongly driven by
the stock markets and only slightly by biodiesel, crude oil and diesel. From the long-run perspective, the
US ethanol market (Tab. C.5) is driven by corn and wheat before and during the food crisis. For the food
commodities, the results are mixed and there are no obvious patterns. And for the Brazilian market (Tab.
C.6), ethanol is driven by sugar only before and during the food crisis. After the crisis, the exchange rate
is the main factor. From the other side, sugar is driven by ethanol only during the periods of relatively
stable prices, i.e. before and after the food crisis. During such times, it is also strongly driven by crude
oil and exchange rate between the US dollar and Brazilian real.

In the original study, the forecast error-variance decomposition, i.e. the effect of shocks in one com-
modity on variance of another, is studied five months after the shock. With the weekly data, we keep this
timing and study the effects after twenty weeks. The results are summarized in Tabs. C.7-C.9.

For the EU biodiesel market (Tab. C.7), biodiesel is strongly driven by other commodities. In the
pre-crisis period, more than 40% of the biodiesel variance is driven by Brent crude oil and retail diesel. The

producing factors play no important role here. During the food crisis period, more than 40% of biodiesel
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variance accounts towards the agricultural commodities. Other economic factors play an important role
as well, namely the stock market (20%), exchange rate (12%) and diesel (10%). After the food crisis,
the influence of other financial factors decreases to around 30% overall and the effect of the agricultural
commodities drops below 20%. From the other side, biodiesel does not play a major role in variance of
the agricultural commodities in the long run (never exceeding a 15% contribution to the error-variance).

In the US ethanol market (Tab. C.8), the results are more direct. Before the food crisis, ethanol is
only mildly affected by other analyzed assets. But during and after the food crisis, it is strongly driven
by its producing food factors (with an aggregate contribution over 40% in both periods). From the other
direction, ethanol does not influence the food commodities before the food crisis, but again during and
after the crisis, the effect increases. During the crisis, ethanol explains around 15% of the corn variance
and around 5% for the other food commodities. And after the crisis, the effect is rather uniform around
10%. Even though these are not huge contributions, they are not negligible. Our results therefore serve
as ex-post correction for the suggestions of Mitchel (2008) and Wright (2014) about dramatic effects of
introduction of biofuels on food prices. After the immediate impact of ethanol prices on food commodity
prices during the 2008 food crisis, this effect had gradually decreased, and during the post-crisis period
2011-2016, the influence of ethanol prices on corn prices was not stronger than influence of financial factors
like stock indexes and exchange rates.

The development of the long-term relationship between Brazilian ethanol and sugar is quite straight-
forward (Tab. C.9). In the pre-crisis period, there is practically no long-term interaction between ethanol
and sugar. Around 40% of the ethanol variance is formed by the summed effects of stock market, crude
oil, exchange rate, and gasoline. During the food crisis period, sugar slightly (13%) affects ethanol. From
the other economic variables, the effects of stock market and exchange rate are worth mentioning. This is
true for both ethanol and sugar. Ethanol has no notable influence on sugar prices. The sugar effect rises
markedly to 30% after the crisis while ethanol does not affect sugar much (less than 5%). We thus observe

an increasing influence of sugar on ethanol in the long run in the Brazilian market but not vice versa.

7 Final notes

Our results help to clarify the wide extensive discussion about the role of biofuels prices in food shortages
manifested in particular during 2008 and 2011 food crises. In agreement with Zhang et al. (2010), we
confirm that price series data do not support strong statements about biofuels uniformly serving as main

leading source of high food prices and consequently the food shortages. However, we show that in par-
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ticular markets and in particular periods, there exist statistically significant price transmissions between
the agricultural commodities and fuels which have been facilitated by the development of biofuels price
transmission channel (de Gorter et al., 2013; Drabik et al., 2016) which has been enabled by the biofu-
els supporting government policies (de Gorter et al., 2013; Drabik et al., 2014, 2015; Rajcaniova et al.,
2013). This price transmission is not purely technologically based, it also includes the influence of financial

markets.
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Table 2: Original dataset description and sources.

Commodity ‘ Specification Source
Crude oil Average of Brent, WTI and Dubai Fateh crude oil prices Zhang et al. (2010)
Gasoline US wholesale spot prices Zhang et al. (2010)
Ethanol Fuel ethanol average rack prices, FOB Omaha, Nebraska neo.ne.gov

Corn (maize) US No. 2 Yellow, FOB Gulf of Mexico, US price quandl.com
Soybeans Chicago Soybean futures contract (first contract forward) No. 2 yellow and par knoema.com

Wheat Wheat, No. 1 Hard Red Winter, ordinary protein, FOB Gulf of Mexico indexmundi.com
Sugar CSCE contract no. 11 nearest future position quandl.com
Rice 5 percent broken milled white rice, Thailand nominal price quote indexmundi.com

29



Table 3: Descriptive statistics of the original dataset. J-B stands for the Jarque-
Bera testing statistic, the significance levels are labelled as ***, ** and * for 99%, 95%, and
90%, respectively. For the prices, the values in brackets represent the values in the original
study of Zhang et al. (2010). As the logarithmic prices and differences of the logarithmic
prices are derived from these, we report only our values.

‘ Average SD Skewness Ex. kurtosis Min. Max. J-B
prices ‘
oil 30.66 (30.67) 22.14 (22.14) 2.19 (2.21) 5.13 (5.27) 10.41 (10.41) 132.55 (132.55) 442.86%**
gasoline 89.86 (89.86) 59.13 (59.13) 1.88 (1.89) 3.17 (3.26) 29.27 (29.27) 339.65 (339.65) 235.07%*
ethanol 1.45 (1.43) 0.48 (0.46) 1.71 (1.98) 2.61 (4.46) 0.90 (0.97) 3.58 (3.78) 179.22%**
corn 118.93 (115.31) 36.07 32.69) 2.01 (2.50) 4.33 (7.44) 75.06 (75.06) 287.11 (287.11) 339.25%**
soybeans 223.00 (223.92) 39.00 (65.40) 0.91 (2.45) 1.02 (7.79) 158.31 (158.00) 363.55 (554.15) 41.95%%*
wheat 161.52 (161.52) 54.18 (54.18) 2.57 (2.59) 8.01 (8.21) 102.16 (102.16) 439.72 (439.72) 879.32%**
sugar 10.03 (10.03) 2.75 (2.75) 0.34 (0.34) -0.31 (-0.29) 5.11 (5.11) 18.05 (18.05) 5.49*
rice 282.26 (282.26)  104.40 (104.40)  4.25 (4.27)  24.78 (25.34)  162.10 (162.10)  1015.20 (1015.21)  6661.05***
log-prices ‘
oil 3.25 0.55 1.03 0.29 2.34 4.89 42.36%**
gasoline 4.34 0.52 0.94 0.08 3.38 5.83 34.39%%*
ethanol 0.33 0.28 1.11 0.57 -0.11 1.28 51.33%**
corn 4.74 0.25 1.32 1.40 4.32 5.66 86.46™"*
soybeans 5.39 0.17 0.40 0.10 5.06 5.90 6.23%*
wheat 5.04 0.27 1.38 2.64 4.63 6.09 141.99%**
sugar 2.27 0.28 -0.25 -0.57 1.63 2.89 5.70*
rice 5.60 0.27 1.34 5.53 5.09 6.92 366.427**
log-differences ‘
oil 0.01 0.08 0.39 3.60 -0.25 0.46 131.44***
gasoline 0.01 0.11 0.05 0.30 -0.25 0.36 0.97
ethanol 0.00 0.08 0.22 0.89 -0.23 0.28 9.41*
corn 0.00 0.06 -0.81 2.93 -0.25 0.17 108.41%**
soybeans 0.00 0.06 -0.04 2.32 -0.25 0.27 52.29%**
wheat 0.00 0.06 0.31 1.49 -0.19 0.23 25.16%**
sugar 0.00 0.07 0.02 0.43 -0.25 0.22 1.83
rice 0.00 0.07 1.32 9.03 -0.28 0.41 855.16**

Table 4: Johansen tests for the original dataset. Both tests (trace test and L,,q;)
are based on one lag as identified using the Bayesian information criterion. p-values are
corrected for the finite sample size. The VECM specification is the option of the restricted
trend based on the previous analysis.

rank ‘ Eigenvalue Trace test p-value ‘ Lipar  p-value

0 0.27809 257.12 <0.01 | 257.12 < 0.01
1 0.20441 181.84 0.0002 | 181.84 0.0003
2 0.14608 129.02 0.0069 | 129.02  0.0096
3 0.12940 92.542 0.0243 | 92.542  0.0295
4 0.11880 60.533 0.0909 | 60.533 0.1001
5 0.067435 31.318 0.4321 | 31.318  0.4439
6 0.042434 15.190 0.5658 | 15.190  0.5715
7 0.022148 5.1736 0.5795 | 5.1736  0.5806
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Table 5: Forecast error variance decomposition of the original model (5 months
ahead). Rows represent a response variable and columns are impulse variables.

‘ oil gasoline ethanol  corn  soybeans wheat  sugar rice
oil 0.5348 0.3935 0.0415  0.0017 0.0153 0.0064 0.0024 0.0044
gasoline | 0.4309  0.4719 0.0518  0.0038 0.0180 0.0184 0.0025 0.0028
ethanol | 0.2219  0.2670 0.4561  0.0008 0.0104 0.0011 0.0367 0.0060
corn 0.0101  0.0014 0.0570  0.8653 0.0101 0.0030 0.0352 0.0179
soybeans | 0.0034  0.0070 0.0491  0.0878 0.7858 0.0184 0.0063 0.0423
wheat 0.0081  0.0026 0.0046  0.0204 0.0120 0.9369 0.0092 0.0062
sugar 0.0010  0.0013 0.0089  0.0115 0.0056 0.0735 0.8033 0.0949
rice 0.0178 0.0010 0.0210  0.0057 0.0355 0.0556  0.0298 0.8336
Table 6: Description of the extended dataset.
Asset ‘ Ticker ‘ Source ‘ Type
US Ethanol ETHNNYPR Index Bloomberg Spot, FOB, anhydrous ethanol
Brazilian Ethanol - CEPEA Anhydrous ethanol
EU Biodiesel BIOCEUGE Index Bloomberg German biodiesel, spot

BIODOCFTFO Thomson Reuters Eikon | Argus Biodiesel FAME 0C CFPP
RED ARA Range Barge FOB
Corn C 1 Comdty Bloomberg 1st month futures, CBOT
‘Wheat W 1 Comdty Bloomberg 1st month futures, CBOT
US Sugarcane SB1 Comdty Bloomberg 1st month futures, ICE

US Sugar Beets QW1 Comdty Bloomberg 1st month futures, LIFFE
Brazilian Sugar - CEPEA Spot USD Price
Rapeseed Oil 1J1 Comdty Bloomberg 1st month futures

Soybean Oil S 1 Comdty Bloomberg 1st month futures, CBOT
Sunflower Seeds SU1 Bloomberg 1st month futures
Palm Oil KO3 Comdty Bloomberg 1st month futures

Brent Crude Oil

CO1 Comdty

Bloomberg

1st month futures, ICE

WTI Crude Oil CL1 COMB Comdty Bloomberg 1st month futures, Nymex
EU Diesel - EIA Retail Diesel Prices
US Gasoline - EIA Retail Premium Gasoline
Brazilian Gasoline - ANP Brazil Weighted av. consumer price
Dow Jones DJI Index Bloomberg US Dow Jones Ind. Average
S&P 500 SP1 Index Bloomberg US S&P 500 Index
FTSE 100 UKX Index Bloomberg British FTSE 100 Index
DAX DAX Index Bloomberg German DAX Index
BOVESPA IBOV Index Bloomberg Brazilian BOVESPA
Federal Funds - Federal Reserve US Fed Funds Rate
LIBOR - ECONSTATS 3 months USD LIBOR
USD/EUR - ECB
USD/BRL - Federal Reserve

31



sok sk sok x sok sk sok x sok um%pw%%u%:
UoI) ‘13891 [ENGREN GRS UOI) -I1}S9I U1} YIIm o) ‘13891 NGRS GRS o) ‘13891 UQI} YIIm o) ‘13891
P Emum_» P Ewummw P EW@» P ﬁf ) P vam_\,r P Ewummw/ P vam_\,r P ﬁw‘ ) P Ewum:ﬁ [epowt [euy
uoI) aun
4 T € X 4 T T T 4 ® ummw u.uwmmﬂ )
u9.x sI3saJaun
[4 T € X [4 id T 0 4 ® am%u o0’} )
U019, I3SOT
4 T 4 4 4 4 T T € Ammmuuasﬁwﬂ )
oI " 11890
14 T [4 4 14 id T 0 € Avamm%mouﬁ )
x X x 0 x X x X x Au:ﬁwmw%ua wﬂ%\wgczv
x x x 0 x x x x x Aazdu%mﬁwﬂum%mwmnu@gizv
x X x z x X x X x Q:mmmm%@mn&vwob
x x x 4 x x x x x Au_:wnwm.w.o%om.wwnwmmhv
sk sok sk sok sk sok sk sok S0k wuw om:%m wﬂﬂww_\v/ﬂ_mo.m\/
sok sok sok ou sok sok sok sok sok pual} jueOYIuUSIS
oI
1 1 1 T 1 T 1 T 1 ser (DB RBan
191] ou
1 T 1 T 1 T 1 1 1 m&ﬁmwﬁ@o DHA
T TS R s I e T S —
€ poreg | g pored | T porred |

"SULI9Y)
UOI1991109-I01I0 91} U0 UIIS9} 1001 JIUnN BIA poyads Ajrodoid st [opotr o1} JRI) 90URINSSE [IIM 1930307 pojlodal ST [opout
[euy o) ‘YHY puy “*PUT pue 90eI} — S350} UISURYO[ 1) SUISTL POYIJUSPI ST SI000A UOIPRIZOIUI0D JO IOqUINU ‘YN0 "O[IIID
JTun oy} 09 309dsoI YIM UOIIRIO] SJ00I ISIOAUL OTF BIA POYIAYD SI [opPOW o1 JO A[Iqe)s ‘pPIIy], ‘uolyenbo owes o1 I10J
POy ST 90URIYIUSIS PULIY SWII) 9} ‘PUOIDG "UOLIDLID UOIJRULIOJUT URIsARY] o) SUIZI[Iin ¢y br 10] paseq polosfes a1e
s@e] rewrydo o) “JSIT] "0IoY pozZLIRWWNS ST oInpadold uoryesymwads [opojy *9[qe) ATewtuns UoI}I9[as [OPOJA :/ O[qe],

32



Appendices

A Cointegration and vector error-correction model

In its simplest form, the bivariate cointegration relationship arises when for two unit-root series, i.e.

integrated of order one I(1), there exists a relationship

Yo = Po+ Prar + & (A1)

for which e, is a stationary process (specifically for the classical cointegration, stationary process with weak
memory, i.e. integrated of order zero I(0)). Eq. A.l represents a long-term relationship between series,
and the fact that ¢; is stationary ensures that series y; and xz; do no wander far away from one another.
In fact, their difference is mean-reverting with a mean of j.

As the original series in Eq. A.1l are unit roots, their first differences are by definition stationary.
Considering the error-term ¢; as a deviation from the long-term equilibrium, the equation can be utilized

into the error-correction model
Ay = wo +wiAxy +0(ye—1 — Y1) + & (A.2)

where 7;_1 is a lagged fitted value from Eq. A.1. The term y;_; — 7;_; represents the lagged deviation
from the long-term equilibrium. When the parameter 7 is negative, the deviation from the equilibrium is
dynamically corrected and hence the name of the model. If the parameter is not negative, the series are
not cointegrated.

The more standard way to represent the error-correction model is using the vector autoregression
(VAR) representation, i.e. controlling for both short-term dynamics (VAR) and long-term dynamics (coin-

tegration). Eq. A.2 then changes to

Azy = wio + w1 Azt + wi2Ay—1 + (Y1 — Ye—1) + €1t (A.3)
Ay, = wap + war Axi—1 + woe Ay + n2(yi—1 — Yi—1) + € (A4)

The system and its representation gets more complicated for a general case of multiple endogenous
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variables. Let us have a system with N endogenous variables and T observations such that®
AXt = ¢AXt_1 + HXt—l + 7T+ ’}/t + &+ (A5)

where AX; is a vector (N x 1) of differenced series at time ¢, AX; 1 is a vector (N x 1) of lagged
differenced series at time ¢ — 1 and ¢; is a vector of random shocks at time ¢. The parameters of interest
are represented by matrix ¢ (N x N), matrix IT (N x N), vector m (N x 1) and vector v (N x 1). The
vector 7 represents the constant terms for each endogenous variable and the vector = represents the time
trend for each endogenous variable. The matrix ¢ reflects the short-term lagged interactions between
endogenous variables and the matrix II reflects the long-term cointegration relationships. In fact, Eq. A.5
can be seen as a vector autoregression with endogenous terms X;_; (Hendry and Juselius, 2001). The
crucial step in the analysis is finding whether the system is in fact cointegrated, estimation of the matrix

IT and identifying the correct restrictions in the model.

B Model specifications for the extended dataset

The stationarity testing is summarized in Tab. C.3. We provide the results for a combination of the ADF
test together with the KPSS test (Kwiatkowski et al., 1992) for stationarity, each test is applied both
excluding and including the time trend (when necessary). The results of the KPSS tests are provided only
when the unit roots are rejected for the original series. In this context and to follow the original research
by Zhang et al. (2010), we study the logarithmic transformations of the series with an exception of the
interest rates which are utilized in their original form (as they are already reported in percentage points).
The results are quite straightforward — the unit root dynamics is not rejected for vast majority of the
series, and if it is, stationarity is rejected as well, which implies that the series are not far away from the
unit root behavior. We can thus proceed with the series as they are.

The whole model selection procedure is summarized in Tab. 7. There are several patterns in the final
model specifications. First, we identified only one lag as the optimal one for all nine estimated models,
which suggests that the short-term interactions are in fact rather short-lived. Second, the time trend was
found significant for practically all VAR representations of the VECM specifications, i.e. the trend factor
is important for the final analysis. Third, all estimated models are stable in the sense that the inverse

roots of the VAR representation of VECM are inside the unit circle. Even though this is a rather technical

8We limit ourselves to one lag, i.e. AX;_ 1, in this representation for brevity but in general, there can
be numerous lags in the model.
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finding, it validates the final models. And fourth, in seven out of nine cases, the VECM specification with
a restricted trend was found to be the best model with stationary error-correction terms. In two cases (the
US ethanol in the pre-crisis period and the Brazilian ethanol in the food crisis period), the cointegration
relationship was not supported by the VECM analysis. Therefore, we used the VAR model for these two
specific cases to be able to understand the short-term relationships between series as the variables do not

tend towards long-run equilibrium.
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C Tables

Table C.1: Augmented Dickey-Fuller test results for the original dataset. Optimal
lag is selected based on the Bayesian information criterion (BIC).

| ADF (constant) p-value ADF (trend) p-value

log-prices ‘
oil 0.6898 0.9920 -1.7461 0.7307
gasoline 0.2695 0.9768 -1.3486 0.8755
ethanol -1.2929 0.6352 -2.4437 0.3567
corn -1.9882 0.2923 -2.2210 0.4772
soybeans -3.0820 0.0293 -3.0222 0.1284
wheat -1.2518 0.6540 -1.8177 0.6964
sugar -2.4237 0.1351 -2.3073 0.4294
rice -0.4778 0.8932 -0.3700 0.9886

log-differences ‘
oil -11.7984 < 0.01 -8.6488 < 0.01
gasoline -3.9700 0.0016 -4.2706 0.0034
ethanol -12.6368 < 0.01 -12.6811 < 0.01
corn -5.8794 < 0.01 -5.8572 < 0.01
soybeans -15.2683 < 0.01 -15.2588 < 0.01
wheat -11.6541 < 0.01 -11.7451 < 0.01
sugar -12.2266 < 0.01 -12.2340 < 0.01
rice -10.3004 < 0.01 -10.5090 < 0.01
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Table C.2: Augmented Dickey-Fuller tests for the error-correction terms of the
original model. ADF tests use the optimal lags based on the Bayesian information
criterion. Non-rejection of the null hypothesis would suggest that the cointegration (and
the connected VECM) relationship is not well specified.

| ADF (constant) p-value

EC1 -3.2349 0.0181
EC2 -3.2311 0.0183
EC3 -3.2525 0.0172
EC4 -3.0221 0.0329
EC5 -3.1602 0.0224
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Table C.3: Stationarity tests results for the logarithmic prices of the expanded
dataset. KPSS test results are shown only when a connected ADF test rejects the null
hypothesis of the unit root. Otherwise, “x” is shown.

| ADF (constant) p-value ADF (trend) p-value | KPSS (constant) p-value KPSS (trend) p-value

Period 1 ‘
EU biodiesel 0.3150 0.9791 -1.1677 0.9159 X X X X
US ethanol -2.0677 0.2580 -2.7302 0.2242 X X X X
BR ethanol -1.4109 0.5786 -2.2888 0.4395 X X X X
Brent crude oil -0.4466 0.8976 -1.9962 0.6001 X X X X
‘WTI crude oil -0.5465 0.8783 -2.0975 0.5442 X X X X
US gasoline -1.7610 0.4004 -4.0510 0.0074 X X 0.2032 0.0180
EU diesel -0.4783 0.8917 -2.3063 0.4285 X X X X
BR gasoline -1.4753 0.5446 -1.5624 0.8049 X X X X
DJI -1.8086 0.3758 -2.0213 0.5863 X X X X
S&P500 -2.0129 0.2812 -2.1332 0.5242 X X X X
FTSE100 -1.7255 0.4171 -1.7924 0.7056 X X X X
DAX -1.3743 0.5947 -1.3948 0.8604 X X X X
BOVESPA -0.7040 0.8424 -3.8688 0.0148 X X X X
fed funds -2.1309 0.2325 -2.0168 0.5916 X X X X
LIBOR -1.5815 0.4921 0.4474 0.9992 X X X X
USD EUR -0.2004 0.9352 -1.3819 0.8640 X X X X
USD BRL -0.0960 0.9473 -3.2801 0.0721 X X X X
corn 0.9585 0.9961 -0.6889 0.9721 X X X X
wheat -0.0616 0.9509 -1.9553 0.6222 X X X X
sugarcane -1.8387 0.3611 -1.6778 0.7583 X X X X
sugar beets -1.8201 0.3702 -1.7306 0.7347 X X X X
sugar brazil -1.8892 0.3377 -1.5856 0.7990 X X X X
soybeans 0.3814 0.9818 -0.6674 0.9736 X X X X
sunflower 0.5570 0.9883 -1.4453 0.8452 X X X X
rapeseed 0.7710 0.9934 -1.9097 0.6464 X X X X
palm oil 0.5634 0.9885 -1.4242 0.8542 X X X X
Period 2 |
EU biodiesel -2.0544 0.2636 -1.2533 0.8985 X X X X
US ethanol -2.1806 0.2144 -2.7401 0.2224 X X X X
BR ethanol -0.5253 0.8840 -2.1278 0.5296 X X X X
Brent crude oil -1.9997 0.2868 -3.1166 0.1066 X X X X
WTTI crude oil -2.3368 0.1620 -2.9794 0.1418 X X X X
US gasoline -2.2313 0.1952 -2.8428 0.1818 X X X X
EU diesel -2.5287 0.1109 -2.9367 0.1544 X X X X
BR gasoline -1.5138 0.5238 -1.6762 0.7567 X X X X
DJI -1.2217 0.6640 -2.4491 0.3529 X X X X
S&P500 -1.3266 0.6161 -2.5179 0.3192 X X X X
FTSE100 -1.2739 0.6406 -2.8528 0.1814 X X X X
DAX -1.0913 0.7182 -2.7265 0.2278 X X X X
BOVESPA -1.2419 0.6551 -2.7638 0.2133 X X X X
fed funds -11.8623 < 0.01 -11.6888 < 0.01 0.4853 0.0470 0.1853 0.0280
LIBOR -1.9771 0.2972 -1.7927 0.7086 X X X X
USD EUR -2.6125 0.0929 -2.3582 0.3997 X X X X
USD BRL -1.4197 0.5710 -2.7558 0.2164 X X X X
corn -1.4842 0.5388 -2.2419 0.4624 X X X X
wheat -1.8030 0.3778 -2.0510 0.5680 X X X X
sugarcane -0.4939 0.8878 -1.7440 0.7263 X X X X
sugar beets -0.8004 0.8156 -2.1145 0.5328 X X X X
sugar brazil -1.0135 0.7507 -2.9908 0.1347 X X X X
soybeans -2.6105 0.0933 -3.1219 0.1054 X X X X
sunflower -1.7555 0.4012 -2.1772 0.4980 X X X X
rapeseed -0.9711 0.7624 -2.6878 0.2434 X X X X
palm oil -1.4833 0.5392 -3.7553 0.0220 X X 0.4340 < 0.01
Period 3
EU biodiesel -1.3744 0.5948 -2.8440 0.1829 X X X X
US ethanol -2.0825 0.2520 -3.5360 0.0376 X X 1.3830 < 0.01
BR ethanol -2.9080 0.0444 -5.1143 0.0001 6.1353 < 0.01 0.4767 < 0.01
Brent crude oil -0.4622 0.8949 -1.8246 0.6902 X X X X
‘WTI crude oil -0.7600 0.8281 -1.6652 0.7640 X X X X
US gasoline -1.1580 0.6947 -2.4667 0.3449 X X X X
EU diesel -0.3327 0.9168 -1.8602 0.6723 X X X X
BR gasoline -0.0144 0.9556 -2.8418 0.1837 X X X X
DJI -1.1657 0.6915 -2.5104 0.3230 X X X X
S&P500 -0.8956 0.7903 -2.3397 0.4117 X X X X
FTSE100 -2.0126 0.2815 -2.2771 0.4460 X X X X
DAX -1.2065 0.6724 -2.7956 0.2002 X X X X
BOVESPA -2.9371 0.0425 -3.6953 0.0243 7.3098 < 0.01 0.2171 < 0.01
fed funds -0.5574 0.8775 -1.3515 0.8747 X X X X
LIBOR -1.7014 0.4306 -1.6970 0.7529 X X X X
USD EUR -1.0882 0.7211 -1.8524 0.6763 X X X X
USD BRL -0.3843 0.9085 -2.1371 0.5223 X X X X
corn -1.2579 0.6496 -2.3675 0.3958 X X X X
wheat -1.7117 0.4242 -2.8491 0.1812 X X X X
sugarcane -2.2059 0.2048 -2.7429 0.2203 X X X X
sugar beets -2.0159 0.2799 -2.2929 0.4359 X X X X
sugar brazil -2.1483 0.2258 -2.0789 0.5570 X X X X
soybeans -1.3265 0.6178 -1.9868 3 6055 X X X X
sunflower -0.7420 0.8329 -1.7590 17219 X X X X
rapeseed -1.7935 0.3833 -2.3559 0.4020 X X X X
palm oil -2.5583 0.1031 -2.4216 0.3675 X X X X
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Table C.6: Granger causality testing for Brazilian ethanol market. “No Granger
causality” null hypothesis is tested here. p-values are reported for all three periods in the
form of Period1/Period2/Period3. When the null hypothesis is not rejected, X is reported.
Columns represent a response variable and rows are impulse variables.

Brazilian ethanol

Brazilian sugar

Long-run causality ‘

Brazilian ethanol
WTI
Brazilian gasoline
BOVESPA
LIBOR
USD/BRL

Brazilian sugar

< 0.01/<0.01/< 0.01
X /X /X
< 0.01/x/x
X /X /%
X /X /X
x/x /< 0.01
0.0546/< 0.01/x

0.0171/x /< 0.01
0.0326/ % /0.0427
< 0.01/x/x
X /X [ X
X /X /X
<0.01/x/< 0.01
< 0.01/<0.01/< 0.01

Short-run causality ‘

Brazilian ethanol
WTI
Brazilian gasoline
BOVESPA
LIBOR
USD/BRL
Brazilian sugar

< 0.01/0.0857/< 0.01
% /% /0.0974
% /0.0832/x
X /X /X
X /X /%
x/x /< 0.01
X /X /X

< 0.01/x/< 0.01
X /X /%
X /X[ X
X /X /X
0.0860/ x / x
< 0.01/<0.01/< 0.01
< 0.01/< 0.01/< 0.01
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Table C.7: Forecast error variance decomposition of EU biodiesel (20 weeks
ahead). Rows represent a response variable and columns are impulse variables.

| FTSE100/DAX Brent USD/EUR LIBOR DE diesel biodiesel soybeans sunflower rapeseed palm oil

Period 1 ‘
FTSE100 0.5076 0.1903 0.0212 0.0100 0.0058 0.0437 0.0445 0.0086 0.0524 0.1158
Brent 0.0068 0.8196 0.0076 0.0127 0.0875 0.0138 0.0130 0.0122 0.0130 0.0138
USD/EUR 0.0001 0.0831 0.7138 0.0566 0.0789 0.0259 0.0082 0.0104 0.0051 0.0181
LIBOR 0.0073 0.1462 0.0477 0.2657 0.0021 0.0054 0.0790 0.0401 0.0750 0.3316
DE diesel 0.0106 0.6355 0.0427 0.0293 0.2011 0.0169 0.0052 0.0289 0.0232 0.0066
biodiesel 0.0192 0.4386 0.0210 0.0727 0.1416 0.2256 0.0058 0.0142 0.0368 0.0244
soybeans 0.0195 0.0097 0.0050 0.0014 0.0252 0.0068 0.5932 0.0010 0.1885 0.1496
sunflower 0.0429 0.0793 0.0010 0.0007 0.0040 0.0827 0.0066 0.6025 0.0834 0.0970
rapeseed 0.0773 0.0317 0.0001 0.0021 0.0414 0.0321 0.1314 0.0077 0.4960 0.1803
palm oil 0.0326 0.0300 0.0011 0.0213 0.0756 0.0161 0.0866 0.0487 0.1233 0.5647

Period 2 ‘
DAX 0.4297 0.1372 0.0683 0.0279 0.0982 0.0099 0.0864 0.0034 0.0426 0.0965
Brent 0.2964 0.2220 0.0623 0.0355 0.0143 0.0013 0.1255 0.0018 0.1550 0.0856
USD/EUR 0.1861 0.0411 0.5088 0.0957 0.0231 0.0077 0.0771 0.0105 0.0086 0.0415
LIBOR 0.0055 0.0004 0.0172 0.8392 0.0106 0.0546 0.0271 0.0085 0.0094 0.0275
DE diesel 0.3568 0.1400 0.0972 0.0236 0.1383 0.0120 0.0720 0.0087 0.0865 0.0649
biodiesel 0.2096 0.0245 0.0041 0.1261 0.0840 0.1074 0.1110 0.0082 0.1978 0.1273
soybeans 0.1623 0.0629 0.0476 0.0707 0.0016 0.0324 0.3304 0.0186 0.1619 0.1117
sunflower 0.0189 0.0002 0.0258 0.0202 0.1062 0.0076 0.0695 0.5882 0.1320 0.0315
rapeseed 0.1262 0.0520 0.0001 0.0326 0.0016 0.0174 0.1969 0.0347 0.4216 0.1170
palm oil 0.2171 0.0818 0.0167 0.0474 0.0015 0.0058 0.1409 0.0027 0.1546 0.3314

Period 3 ‘
FTSE100 0.6384 0.158 0.0011 0.0399 0.0611 0.0188 0.032 0.0087 0.0387 0.0033
Brent 0.1859 0.5552 0.0053 0.0234 0.0871 0.0246 0.0233 0.0637 0.0206 0.0110
USD/EUR 0.0124 0.0619 0.7644 0.0267 0.0179 0.095 0.0056 0.0012 0.0036 0.0114
LIBOR 0.0287 0.0498 0.0008 0.8461 0.0118 0.0004 0.0113 0.0193 0.0145 0.0173
DE diesel 0.1796 0.5121 0.0021 0.0168 0.1153 0.0351 0.0469 0.0474 0.0379 0.0068
biodiesel 0.0505 0.1251 0.0863 0.0057 0.0461 0.5053 0.0684 0.048 0.0442 0.0204
soybeans 0.0101 0.0277 0.0012 0.0047 0.0052 0.1383 0.4589 0.0471 0.2188 0.088
sunflower 0.0104 0.0289 0.0602 0.0004 0.0483 0.0413 0.0715 0.632 0.0207 0.0862
rapeseed 0.0088 0.0088 0.0267 0.0061 0.0443 0.0464 0.1273 0.0028 0.6756 0.0532
palm oil 0.0028 0.0141 0.0438 0.0244 0.0813 0.0368 0.1058 0.0074 0.0507 0.6329
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Table C.8: Forecast error variance decomposition of US ethanol (20 weeks
ahead). Rows represent a response variable and columns are impulse variables.

‘ DJI/S&P500 WTI USD/EUR Fed funds US gasoline US ethanol corn wheat sugarcane sugar beets

Period 1 ‘
DJI 0.8641 0.0463 0.0125 0.0414 0.0048 0.0033 0.0094 0.0012 0.0148 0.0023
WTI 0.0234 0.8140 0.0171 0.0021 0.0732 0.0082 0.0142 0.0107 0.0251 0.0120
USD/EUR 0.0109 0.0194 0.8851 0.0002 0.0549 0.0029 0.0138 0.0020 0.0066 0.0043
Fed funds 0.0347 0.0033 0.0003 0.9060 0.0016 0.0084 0.0113 0.0144 0.0074 0.0126
US gasoline 0.0120 0.1954 0.0368 0.0011 0.6760 0.0504 0.0050 0.0063 0.0011 0.0160
US ethanol 0.0082 0.0255 0.0036 0.0001 0.0709 0.8171 0.0190 0.0148 0.0191 0.0218
corn 0.0052 0.0231 0.0126 0.0072 0.0073 0.0094 0.7115 0.1984 0.0168 0.0084
wheat 0.0007 0.0180 0.0014 0.0112 0.0045 0.0086 0.1991 0.7295 0.0240 0.0030
sugarcane 0.0002 0.0155 0.0132 0.0057 0.0003 0.0139 0.0153 0.0164 0.6472 0.2725
sugar beets 0.0019 0.0080 0.0107 0.0107 0.0099 0.0128 0.0087 0.0031 0.2761 0.6580

Period 2 ‘
DJI 0.3358 0.3065 0.0509 0.0085 0.0081 0.0648 0.0661 0.0810 0.0606 0.0177
WTI 0.1448 0.1919 0.0825 0.0352 0.2377 0.0614 0.1169 0.0929 0.0158 0.0210
USD/EUR 0.0316 0.0937 0.4103 0.0589 0.0645 0.1685 0.0680 0.0360 0.0609 0.0075
Fed funds 0.0317 0.1251 0.0445 0.3896 0.1358 0.0135 0.1280 0.1029 0.0048 0.0239
US gasoline 0.1135 0.1408 0.0798 0.0376 0.3496 0.0346 0.1225 0.0932 0.0088 0.0195
US ethanol 0.0413 0.0601 0.0459 0.0007 0.0264 0.3777 0.2633 0.1373 0.0225 0.0247
corn 0.0362 0.0445 0.0311 0.0185 0.0715 0.1631 0.4065 0.1857 0.0249 0.0180
wheat 0.0156 0.0772 0.0448 0.0295 0.0145 0.0557 0.2435 0.4585 0.0364 0.0243
sugarcane 0.0255 0.0012 0.0039 0.0004 0.0112 0.0587 0.0385 0.0247 0.4901 0.3458
sugar beets 0.0154 0.0020 0.0030 0.0214 0.0546 0.0668 0.0419 0.0145 0.3135 0.4668

Period 3 ‘
S&P500 0.2902 0.0388 0.3129 0.0283 0.0193 0.0830 0.0760 0.0025 0.0043 0.1447
WTI 0.0480 0.0987 0.4178 0.0030 0.0273 0.1585 0.0849 0.0076 0.0134 0.1409
USD/EUR 0.0916 0.0683 0.7274 0.0013 0.0057 0.0550 0.0204 0.0133 0.0028 0.0142
Fed funds 0.0025 0.0531 0.0593 0.7151 0.0701 0.0417 0.0041 0.0087 0.0060 0.0393
US gasoline 0.1153 0.0988 0.4449 0.0025 0.0687 0.1409 0.0435 0.0082 0.0039 0.0733
US ethanol 0.1150 0.0249 0.0794 0.0168 0.0372 0.3044 0.1307 0.0132 0.0874 0.1910
corn 0.1041 0.0371 0.1421 0.0162 0.0099 0.1050 0.2904 0.0037 0.1474 0.1440
wheat 0.0486 0.0040 0.0022 0.0332 0.0145 0.0894 0.1183 0.3988 0.2309 0.0600
sugarcane 0.0825 0.0172 0.0482 0.0014 0.0045 0.1152 0.1952 0.0031 0.3477 0.1850
sugar beets 0.0834 0.0079 0.1588 0.0124 0.0365 0.1036 0.1360 0.0117 0.0919 0.3578

Table C.9: Forecast error variance decomposition of Brazilian ethanol (20 weeks
ahead). Rows represent a response variable and columns are impulse variables.

‘ BOVESPA WTI USD/BRL LIBOR BR gasoline BR ethanol sugar brazil

Period 1 ‘
BOVESPA 0.5580 0.0020 0.2102 0.0007 0.0011 0.0631 0.1649
WTI 0.0231 0.8099 0.0311 0.0030 0.0413 0.0911 0.0005
USD/BRL 0.1957 0.0196 0.5758 0.0079 0.0259 0.0030 0.1720
LIBOR 0.0090 0.0055 0.0127 0.8514 0.0606 0.0395 0.0214
BR gasoline 0.0163 0.0017 0.0024 0.0176 0.9096 0.0229 0.0294
BR ethanol 0.0870 0.1229 0.0085 0.0057 0.1341 0.6325 0.0093
sugar brazil 0.1031 0.0613 0.0428 0.0039 0.1309 0.0122 0.6459

Period 2 |
BOVESPA 0.5207 0.1246 0.2007 0.0041 0.0031 0.0457 0.1010
WTI 0.1408 0.5728 0.1773 0.0074 0.0057 0.0046 0.0914
USD/BRL 0.1594 0.1323 0.4177 0.0595 0.0012 0.0751 0.1548
LIBOR 0.0058 0.0387 0.0974 0.7927 0.0015 0.0399 0.0241
BR gasoline 0.0110 0.0513 0.0144 0.0015 0.9117 0.0016 0.0084
BR ethanol 0.0627 0.0408 0.1278 0.0326 0.0051 0.5951 0.1361
sugar brazil 0.0945 0.0773 0.1705 0.0129 0.0035 0.0290 0.6125

Period 3 ‘
BOVESPA 0.5890 0.1413 0.1271 0.0615 0.0046 0.0019 0.0746
WTI 0.1589 0.6964 0.0826 0.0260 0.0225 0.0043 0.0094
USD/BRL 0.0694 0.0351 0.5017 0.0453 0.0102 0.0235 0.3147
LIBOR 0.1829 0.1068 0.1674 0.4292 0.0577 0.0517 0.0041
BR gasoline 0.0331 0.0029 0.0121 0.0392 0.8880 0.0201 0.0045
BR ethanol 0.0125 0.0667 0.0978 0.0547 0.0694 0.3895 0.3094
sugar brazil 0.0084 0.0047 0.1167 0.0013 0.0009 0.0310 0.8371
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