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Abstract: Expansion of ethanol production in the United States has raised concern regarding its 
land-use change effects. However, little is known about the extent to which observed land use 
change in the US can be attributed to ethanol plant proximity or is caused by changes in crop 
prices that may be partly induced by expansion in ethanol production. This study aims to 
examine the determinants of changes in corn acreage and aggregate crop acreage by 
simultaneously identifying the effects of establishment of ethanol plants serving as terminal 
markets for corn and the effects of changes in crop prices in the United States between 2003 and 
2014. Our results show that corn acreage and total acreage are fairly inelastic with respect to 
both changes in ethanol capacity in the vicinity as well as changes in crop prices. Our estimates 
of acreage elasticity with respect to corn ethanol production are smaller than those obtained by 
previous studies that disregard the price effect on crop acreage. We find that, ceteris paribus, the 
increase in ethanol capacity alone led to a modest 3% increase in corn acreage and less than 1% 
increase in total crop acreage by 2012 when compared to 2008. The effect of corn price and 
aggregate crop price on acreage change over 2008-2012 was more than twice larger than that of 
effective ethanol production capacity over this period; but this price effect was largely reversed 
by the downturn in crop prices after 2012. This study shows that land-use change is not a static 
phenomenon and that it is important to examine how it evolves in response to various factors that 
may change over time. 
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Effects of Ethanol Plant Proximity and Crop Prices on Land-Use Change in the United 

States 

I. INTRODUCTION 

The increase in corn-ethanol production in the United States since 2003 has led to concerns 

about the expansion of land under corn production and the consequent conversion of non-

cropland to crop production in response to higher crop prices induced by corn ethanol 

(Searchinger et al. 2008; Fargione et al. 2008).  Expansion of crop acreage on non-cropland has 

the potential to reduce soil carbon stocks, to increase greenhouse gas emission and nitrate run-

off, as well as to adversely affect biodiversity (Tilman et al. 2002; Parton et al. 2015). The 

amount of land conversion induced indirectly by higher crop prices that have accompanied the 

expansion in corn ethanol has been the subject of significant debate in the literature (Khanna and 

Crago, 2012).  

A number of studies have used satellite data to show that there has been substantial 

expansion of cropland through the conversion of grasslands to crop production in the 

Midwestern United States since 2007 (e.g., Wright and Wimberly 2013; Lark, Salmon and Gibbs 

2015; Mladenoff et al. 2016; Wright et al. 2017). For instance, Lark, Salmon and Gibbs (2015) 

find that the U.S. aggregate cropland increased by 2.98 million acres over 2008-2012, which 

contradicts the data from the National Agricultural Statistics Service (NASS) of the U.S. 

Department of Agriculture (USDA) that show the increase was only 0.94 million acres (Dunn et 

al. 2017). By comparing land use before the expansion of corn ethanol in 2008 to that after the 

expansion in 2012, Wright et al. (2017) show that the rate of grassland-to-cropland conversion 

increases with proximity to a refinery location and they conclude that the expansion in cropland 

represents a persistent shift in land use rather than short term variability. They implicitly attribute 
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the entire change to corn ethanol and do not quantify the causal effect of expansion of corn 

ethanol on land use change while controlling for other factors that affect crop acreage.   

A few studies have questioned the effect of corn ethanol on land use and compared trends 

in cropland acreage and in cropland rents to show that large increases in cropland rents of 56%-

64% in the United States were accompanied by small increases of 0.3%-3% in total cropland 

acreage during biofuel boom, implying that crop acreage has been relatively inelastic to biofuel-

induced crop price increases (Barr et al. 2011; Swinton et al. 2011). These studies, like the 

satellite data based studies, draw circumstantial inferences about the role of biofuels by 

estimating the amount and type of land use change over time but do not provide direct evidence 

about the causes of this observed land use change or the extent to which it can be attributed to 

corn ethanol production.  

Studies that have quantified the causal effects of corn ethanol plants on corn acreage in 

their vicinity include Miao (2013), Brown et al. (2014), Fatal and Thurman (2014), and 

Motamed, McPhail, and Williams (2016). These studies find a statistically significant increase in 

corn acreage in the proximity of corn ethanol plants, likely because of increased demand for corn 

by these plants. This increase in corn acreage can be considered the direct acreage effect of corn 

ethanol production given the underlying premise that it is producing corn as a feedstock for the 

ethanol plant. In doing so, however, these studies do not simultaneously examine the indirect 

effect of the change in crop prices on land use. This is in part because of the sub-state or regional 

scale of their analyses. Although Miao (2013) controls for corn-soybean price ratios when 

examining the effect of ethanol plants on corn acreage shares focusing on Iowa, he only covers 

the 1997-2009 period and does not separately identify the effect of corn price on acreage. 

Moreover, Miao (2013) does not examine response of total cropland acreage to ethanol plant 
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proximity or to crop prices. Brown et al. (2014) use a cross-sectional dataset on acreage for 

Kansas that lacks price variation at a sub-state level. Fatal and Thurman (2014) and Motamed, 

McPhail, and Williams (2016) have included year fixed effects to control for crop prices, which 

relies on the implicit assumption that there is no spatial variation in crop prices over the studied 

area. In this study we are examining both the direct effect of corn ethanol production on crop 

acreage in the vicinity of the corn ethanol plants as well as the indirect effect on acreage due to 

crop prices. 

When we expand the study area to the entire contiguous United States, the law of one 

price may not hold for commodity markets where there is considerable spatial variability in 

prices (Miljkovic, 1999); therefore, we cannot  rely on year fixed effects to control for the effects 

of crop prices. In addition, using year fixed effects to control for price effects does not allow for 

an explicit assessment of the elasticity of acreage with respect to crop prices, or quantification of 

the temporal and spatial changes in acreage due to the changes in crop prices.1 Moreover, since 

crop prices are correlated with aggregate ethanol capacity (Zilberman et al. 2013; Roberts and 

Schlenker 2013) and aggegate ethanol capacity is correlated with local ethanol capacity, we 

conjecture that crop prices, particularly at the state-level, may be correlated with local ethanol 

                                                           
1 Several previous studies have investigated the effect of crop prices on crop acreage and found a 

postive and statistically significant but relatively inelastic effect (e.g., Roberts and Schlenker 

2013; Miao, Khanna, and Huang 2016). These studies, however, analyze changes in acreage 

prior to the corn ethanol boom and do not consider the effect of ethanol plant proximity. 
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capacity.2 Therefore, explictly controlling for state-level crop prices while analyzing the effect of 

ethanol plant proximity on land use could avoid the potential for omitted variable bias.  

In this paper, we aim to identify the effects of ethanol plant proximity and of crop prices 

on cropland acreage over the 2003-2014 period. The effect of proximity to an ethanol plant on  

corn acreage is likely to be most evident in the vicinity of the plant because it can pay a higher 

price to a farmer net of transportation costs than does a distant terminal market. McNew and 

Griffith (2005) and Lewis and Tonsor (2011) provide evidence of a key driver of the proximity 

effect by showing that the establishment of ethanol plants had a positive effects on local corn 

price received by farmers close to the plants. Unlike the effects of ethanol plant proximity, the 

effect of an increase in crop prices on cropland acreage is expected to be more widespread and 

not confined to the vicinity of the plants. By enhancing returns from corn production at all 

locations, an increase in corn price creates incentives to convert land from other uses to corn, 

                                                           
2 The correlation between local-level ethanol capacity (say, in a county) and crop prices is not 

direct; instead, both are likely to be correlated with national-level ethanol capacity over 2006-

2009 when US ethanol capacity increased from 6.32 to 14.54 billion gallons per year and the 

number of ethanol plants increased from 95 to 170 (USDOE 2015). Many ethanol plants were 

constructed simultaneously across the United States in that period, which leads to a positive 

correlation between local ethanol plant capacity and national-level ethanol capacity. In our 

dataset (to be described below), the correlation coefficient between the two is 0.17. We also find 

a positive although small (0.19) correlation between state-level Laspeyres crop price index and 

county-level ethanol capacity. For state-level corn price and county-level ethanol capacity, the 

correlation is 0.11. 
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both in the vicinity of ethanol plants and distant from the plants. Note that we are not examining 

the relationship between ethanol production and crop prices which has been analyzed  by other 

studies (e.g., Zilberman et al. 2013; Roberts and Schlenker 2013). Instead, we are examining the 

effects of ethanol plant proximity and crop prices on crop acreage. In our empirical analysis we 

also investigate the aforementioned omitted variable bias by estimating specifications that 

include or exclude crop prices and analyzing its implication for the coefficient of the ethanol 

capacity variable. 

We quantify the proximity effect and price effect on both corn acreage and total crop 

acreage. Existing studies examining the proximity effect of corn ethanol production have tended 

to focus on corn acreage or its share in total crop acreage.3 Much of the concern about the land 

use change caused by corn ethanol production has, however, been not about changes in land use 

at the intensive margin (from other crops to corn) but about changes at the extensive margin 

(from non-cropland to cropland). These extensive margin changes could occur both in the 

vicinity of corn ethanol plants as corn production expands onto marginal land and in further 

areas from ethanol plants as corn production becomes more profitable. As corn price rises due to 

increased demand for corn ethanol, prices of other crops are also likely to be positively affected 

due to increased demand for land. These price changes can lead to changes in cropland at the 

extensive margin beyond those caused directly by proximity to ethanol plants.  

A major difference between this study and existing studies is that we simultaneously 

identify the acreage effects of ethanol plant proximity and of spatially varying crop prices, while 

                                                           
3 An exception is M Motamed, McPhail, and Williams (2016) that examines the effects of corn 

ethanol production capacity on total crop acreage. 
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controlling for other factors such as input prices, population density, and weather shocks that can 

also affect crop acreage. The endogeneity of crop prices and of ethanol capacity is addressed by 

using the instrumental variable approach. Specifically, we instrument for crop prices with lagged 

crop stocks, and instrument for ethanol capacity with an interaction between a county’s railroad 

density and a year’s national ethanol mandate. We also control for unobservable spatial factors 

that can lead to spatial autocorrelation and affect land use choices by estimating standard errors 

robust to spatial autocorrelation and heteroskedasticity (Conley 1999; Hsiang 2010). 

Furthermore, unlike previous studies, our analysis covers the 2003-2014 period over 

which there has been substantial fluctuation in crop prices. As shown in Figure 1 (a) and (b), 

corn ethanol production and the number of corn ethanol plants expanded significantly till 2012 

but plateaued after that. Corn price and a total crop price index also increased till 2012 but began 

declining after that (Figure 1, (c) and (d)). Despite this, corn acreage and total crop acreage 

increased after 2007 but began to decrease or plateau after 2012 (Figure 1, (e) and (f)); this 

occurred even as ethanol capacity and the number of ethanol plants remained stable. By 

expanding our analysis to include the period after 2012 when the changes in crop price and 

ethanol capacity are likely to have had opposing effects on crop acreage, we distinguish between 

the effects of proximity to ethanol plants from those due to changes in crop price on crop acreage 

and identify changes that were transitory versus more permanent with greater precision.  

Unlike previous studies that all have a regional focus, our analysis is national in scope 
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and is based on panel data for 2,535 counties in the contiguous United States4. This enables us to 

examine the effects of crop price changes on crop acreage at locations both near and distant from 

corn ethanol plants. The framework developed here enables us to disaggregate land use change 

due to various factors and quantify the responsiveness of land use change to these facrors. 

Lastly, we use the estimated parameters and the actual change in ethanol capacity and in 

crop prices in 2012 and 2014 relative to 2008 (or, separately, relative to 2003) to quantify the 

magnitude of the expansion in crop acreage due to ethanol plant proximity and crop prices over 

the 2003-2014 period. Our analysis shows that land use is fairly inelastic to changes in corn 

ethanol production capacity and in crop prices.  A 1% increase in the effective ethanol capacity 

in a county will lead to an increase in corn acreage in that county by about 0.03%-0.1% and an 

increase in total acreage by about 0.02-0.03%. A 1% increase in corn price will increase corn 

acreage in a county by 0.18%-0.29%. The elasticity of aggregate cropland acreage with respect 

to crop price is about 0.07-0.08. Our findings indicate that previous studies may have 

overestimated the proximity effects of corn-based ethanol plants.  

Our results show that the expansion in corn ethanol capacity alone, ceteris paribus, led to 

a 2.9-million-acre increase in corn acreage and a 2.1-million-acre increase in total crop acreage 

in 2012 relative to 2008. Although substantive in magnitude, these land use changes represented 

a small percent (3.1%) of total corn acreage and 0.9% of total crop acreage in 2008. Changes in 

corn price and crop prices over the same period (2008-2012) led to much larger changes in corn 

                                                           
4 Existing studies examine the effects of corn ethanol production in one state, e.g., Iowa (Miao 

2013) and Kansas (Brown et al. 2014), or in one region, e.g., the Midwest (Motamed, McPhail, 

and Williams 2016).  
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acreage (8.5%) than in total crop acreage (1.9%); implying that the effect of changes in corn 

price on land use was largely at the intensive margin rather than at the extensive margin.  

Moreover, the effect of crop prices on land use was largely reversed by the downturn in prices 

after 2012 and close to negligible by 2014 relative to 2008.  

This analysis shows that land use change is not a static phenomenon and that it is 

important to examine how it evolves in response to various factors that may also change over 

time. Our findings also show that all cropland expansion accompanying the corn ethanol boom 

should not be considered to be irreversible as argued by Wright et al. (2017). By decomposing 

the various causes of land use change over the 2007-2014 period we show that the direct change 

in land use caused by proximity to ethanol plants has persisted because of the steady increase in 

ethanol plant capacity over the study period. On the other hand, the indirect land use change due 

to higher crop prices has been transitory due to the volatility in crop prices. 

II. CONCEPTUAL FRAMEWORK 

We now present an intuitive conceptual framework that underpins our empirical model to 

quantify the effects of ethanol plant proximity and crop prices on land use. We hypothesize that a 

farmer’s crop acreage decisions are influenced by numerous factors such as input and output 

prices, soil quality, and local climate (Lee and Sumner, 2015). Specifically, a key determinant of 

corn acreage is the expected corn price received at the farm-gate, which is defined as the corn 

price at terminal markets net of transportation cost per bushel from the farm to the closest 

terminal (McNew and Griffith 2005; Motamed, McPhail, and Williams, 2016). With the 

establishment of an ethanol plant in the vicinity of the farmer’s cropland, the cost of 

transportation of corn to the plant will be lower than that of transporting it to a distant existing 

terminal. As a result, the received price at the farm-gate will increase with the establishment of 
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an ethanol plant in vicinity because the ethanol plant serves as a closer terminal market for corn. 

The extent to which the ethanol plant will directly affect the choice of acreage planted under 

corn, namely the proximity effect of a corn ethanol plant, will depend on (a) the extent to which 

transportation costs are lowered and (b) the capacity of the ethanol plant. These factors together 

will influence the magnitude of demand for corn for ethanol at the relatively higher price than in 

the absence of the plant.   

Moreover, the received farm-gate price by a farmer is also affected by the price of corn at 

existing terminals, regardless of the farm’s location relative to the ethanol plants. Changes in 

corn price at the terminals could occur for various reasons, such as large-scale weather shocks, 

international trade, and increased aggregate demand for corn for ethanol. By diverting corn from 

food and feed markets, increased corn ethanol production has been shown to at least partly 

explain the higher crop prices that were observed after 2007 (Roberts and Schlenker 2013; 

Zilberman et al. 2013). Higher price of corn at terminals will create indirect incentives for corn 

acreage to expand even in locations that are distant from ethanol plants. For farmers close to 

ethanol plants, an overall increase in corn price across terminals will strengthen the incentive to 

grow corn in addition to the incentive provided by ethanol plants in proximity. We, therefore, 

hypothesize that corn acreage planted by a profit maximizing, price taking farmer will depend on 

the ethanol capacity in the vicinity of the farmer’s land, the price of corn at the terminals, as well 

as other factors, such as input prices, soil quality, and climate variables.  

The presence of a corn ethanol plant can also be expected to affect total acreage as it 

increases demand for corn and expands corn acreage either on existing cropland or land not 

currently used for crop production. Expansion in corn acreage through displacement of other 

crops could also expand total acreage as the displaced crops may shift to marginal land. 
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Similarly, increase in returns to cropland as proxied by a higher aggregate crop price index is 

also hypothesized to indirectly increase total land under crop production by making it profitable 

to incur the costs of converting non-cropland to cropland. In the next section we discuss the 

econometric approach to be used to identify these price and proximity effects on corn acreage 

and aggregate crop acreage.  

 III. EMPIRICAL MODEL 

Our empirical analysis is based on county-level data because that is the smallest scale for which 

data on crop acreage are available to us over 2003-2014. We believe that county-level data 

provide a reasonable approximation for farm-level acreage decisions because (a) a county is still 

a relatively small unit for crop production in the grain market; and (b) there is significant 

heterogenity across counties in their access to ethanol plants as well as in their input and output 

prices, soil quality, and climate.5 Based on the conceptual framework discussed above, we seek 

to estimate the effect of ethanol plant proximity and the effect of crop prices on crop acreage by 

directly including ethanol plant capacity and state-level crop price as explanatory variables in the 

reduced form econometric model. We approximate the reduction in transportation costs of corn 

grain due to ethanol plant establishment by constructing an effective ethanol production capacity 

variable, ,κ  for each county (discussed below). We estimate a reduced-form econometric model 

for corn acreage and total cropland acreage each as specified below:  

(1)                         0 1 2 ,c c
ijt it i ij ij jt tA p uβ β β εκ= + + + + +3β Γ ijt                                                   

                                                           
5 Numerous studies have used county-level data to examine the response of crop acreage to 

prices and other factors and we refer readers to Miao, Khanna, and Huang (2016) for a brief 

review of these studies. 
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(2)                         0 1 2 ,  a a
ijt it ij ij ijttA p vγ γ γ κ ξ= + + + + +3γ Λ ijt  

where cA  and aA  are corn acreage and aggregate crop acreage, respectively; subscripts i, j, and t 

denote state i, county j and year t, respectively; 0β  to 3β  and 0γ  to 3γ  are parameters or 

parameter vectors to be estimated, iju  and ijv  are county-level fixed effects; and lastly, ijt  and 

ijtξ  are error terms. We include time-varying and spatially varying corn prices (i.e., c
itp ) and the 

aggregated crop price index (i.e., a
itp ) as an explanatory variable in the corn acreage model and 

aggregated acreage model, respectively. Note that prices are measured at the state-level and 

therefore c
itp  and a

itp  do not contain subscript j. Vectors of variables (Γ ijt  and Λ ijt ) include 

factors other than crop prices and effective ethanol plant capacity that may influence corn 

acreage and total acreage, respectively. Specifically, Γ ijt  includes a fertilizer price index, 

population density, and March to May monthly precipitation. It also includes the linear and 

quadratic time trend terms to capture other factors that change over time and may affect crop 

acreage, such as overall technology advances and yield increases. The definitions of these 

variables are presented below in the Data and Variables Section. Precipitation in March, April, 

and May are included for corn acreage regression because precipitation during planting season 

can delay planting and affect corn acreage decision (Miao, Khanna, and Huang 2016). Vector 

Λ ijt  includes the same variables as those in Γ ijt  but excludes monthly precipitation because 

planting seasons of major crops differ widely and hence the effects of precipitation are expected 

to vary across the crops in ways that make the effects on total acreage negligible; for example, 

heavy precipitation in April may delay and reduce planting of corn and lead farmers to plant 
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more soybeans in May instead (NASS 2010), resulting in negligible changes in total planted crop 

acreage. 

Crop acreage in one county can be correlated with that in the neighboring counties due to 

the similar geographical, climatic, and socioeconomic factors shared by neighboring counties. 

Therefore, in the econometric models described in equations (1) and (2), we allow for spatial 

autocorrelation of the error terms ijt  and ijtξ . We correct for this spatial autocorrelation in the 

error terms by estimating Conley standard errors.6 Failure to take spatial autocorrelation into 

account may lead to underestimation of the standard errors (Schlenker, Hanemann, and Fisher 

2006). 

A key econometric issue is the endogeneity of ethanol capacity and of the price variables 

in models (1) and (2). Since input costs account for a large share of the total production costs of 

ethanol, ethanol plants tend to locate within the corn producing regions (Lambert, et al. 2008; 

Haddad, Taylor, and Owusu 2010; Sarmiento, Wilson, and Dahl 2012; Duffield, Johansson, and 

Meyer 2015). For example, ethanol plants in Iowa, the top corn producing state in the United 

States, account for about 25% of total ethanol plant capacity in the country (Renewable Fuels 

Association 2017). Therefore, the effective ethanol capacity in a region can be determined by 

corn acreage and hence is endogenous. Moreover, farmers make acreage decisions based on their 

output price expectation and input prices at the time of planting. These prices may, however, not 

be strictly exogenous because they are likely to be affected by planted acreage. 

                                                           
6 We are indebted to an anonymous referee for suggesting this approach. We refer readers to 

Conley (1999) for details about the Conley standard error and to Hsiang (2010) for an 

application. 
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To address the endogeneity of the ethanol capacity and price variables, we apply a panel 

data instrumental variable estimator with county fixed effects. Specifically, we use an interaction 

term between railroad density associated with a county and volume of ethanol mandated under 

the Renewable Fuel Standard (RFS) as an instrument for the effective ethanol capacity variable. 

Output prices are instrumented by using lagged stocks of corresponding crops and the input price 

variable (fertilizer index in this study) is instrumented by using natural gas price. We explain the 

rationale for the choice of instruments in the next section. Furthermore, we employ fixed effects 

models to control for unobserved time-invariant factors that might affect ethanol plant locations 

such as a county’s geographical location. As robustness checks, we also use different 

instrumental variables and find that the main results are unchanged in signs and statistical 

significance. We describe the construction of explanatory variables and instrumental variables in 

the next section. 

IV. DATA AND VARIABLES 

The econometric analysis is based on county-level data for 2,535 counties of the contiguous 

United States in period 2003-2014. These counties are selected because they produce at least one 

of the ten major crops considered in this study in at least one year during 2003-2014.7 The 

selection is based on the rationale that the existence of a non-zero production year of crop 

demonstrates that the county has the potential to grow crops if it is profitable to do so. Excluding 

                                                           
7 The ten crops are: barley, corn, cotton, oats, peanuts, rice, rye, soybeans, sorghum, and wheat. 

Since these crops account for more than 85% of the cropland acreage in the United States 

(Nickerson et al. 2011), we expect that changes in total acreage of these ten crops will reflect 

most of the changes in aggregate cropland acreage. 
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counties that did not continuously produce corn or all crops could result in sample selection bias. 

Of these 2,535 counties covered in our dataset, 2,077 counties produced corn in at least one of 

the years over 2003-2014 and form our sample for corn acreage. Table 1 provides the summary 

statistics for all the dependent, independent, and instrumental variables used in the regressions. 

The data sources and definitions of these variables are explained below. 

Crop Acreage 

Annual crop acreage data over 2003-2014 are obtained from NASS of the USDA. We measure 

corn acreage by planted acres in a county and construct a balanced panel of 2,077 counties by 

assuming that counties with non-reported corn acreage in a year have zero corn acreage in that 

year; this enables us to examine the effects of changes in corn ethanol production and in crop 

prices on acreage in counties that have the potential to grow corn even if they do not grow it 

continuously.8 Similarly, we construct a balanced panel for the 2,535 counties that produced at 

least one of the ten major crops in any of the years over 2003-2014, in which aggregate cropland 

acreage is constructed by aggregating planted acreage of the ten major field crops considered in 

this study. To test the robustness of our results to county-year selection, we also conduct the 

same econometric analysis based on an unbalanced dataset that includes a county-year 

observation only if it has strictly positive value of acreage reported by NASS. We find that our 

                                                           
8 NASS of the USDA does not report a county’s acreage if the total number of growers in that 

county is extremely small (NASS 2018). Therefore, the non-reported value of acreage indicates 

either there is no production or the production is small. We hence approximate a non-reported 

value with zero. 
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results for both corn acreage and aggregate acreage models are robust across the balanced and 

unbalanced datasets.  

Crop Prices 

We hypothesize that farmers’ make planting decisions based on their price expectation during 

the planting season. A number of studies assume that the law of one price equalizes prices across 

regional markets and that the effet of price on acreage can be captured using year fixed effects 

(Motamed, McPhail, and Williams, 2016; Roberts and Schlenker, 2013; Xie et al., forthcoming). 

Studies analyzing the support for the law of one price suggest that crop prices can vary across 

states for a number of reasons, including differences in transportation costs, processing costs, 

sales taxes, transactions costs and delivery dates that vary across locations (Thompson et al. 

1990; (Goodwin, Grennes and Wohlgenant, 1990). We consider the state level prices received by 

farmers in the previous year as one proxy for expected prices (Miao, Khanna, and Huang 2016). 

We consider futures price in the current year as another proxy for expected prices. Previous 

studies have shown that futures prices are highly correlated with lagged received prices and that 

futures prices and lagged received price can be used interchangeably without strong evidence to 

suggest that one outperforms the other in describing farmers’ price expectations (e.g., Miao, 

Khanna, and Huang 2016). State-level data for received prices are obtained from NASS and 

futures prices for corn are from the Chicago Board of Trade. All the crop prices are converted to 

year 2000 prices by using the GDP Implicit Price Deflator reported by U.S. Bureau of Economic 

Analysis. 

While received prices vary by state and year, corn futures prices are available at the 

national level. However, as the active planting date for each state differs, there is variation in the 

planting-season prices of futures contracts that mature in the harvest season. We rely on this 
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variability to construct a futures price variable that varies by state due to the variation in corn 

planting date across the states included in this study. Specifically, by following Miao, Khanna, 

and Huang (2016), for each state we first identify its most active window for planting based upon 

“Field Crops Usual Planting and Harvesting Dates” reported by NASS (2010). We then calculate 

the average of October corn futures prices during these planting windows. The calculated 

average prices, now varying across states, are used as planting season futures prices at the state-

level. 

For the aggregate crop acreage models, we construct the Laspeyres price index based 

upon deflated state-level received prices and production levels for each crop using 2002 as the 

base year. In year {2002,..., 2014}t∈  the price index is defined as:

2002 2002 2002
10 10

1 1
( ) / ( ),it lit li li l

a
l il

p p q p q
= =

= ∑ ∑  where litp  is the received price of crop l in state i in 

year t; and 2002liq  is the production of crop l in state i in the base year, 2002. Data for production 

of the ten crops are obtained from NASS. We use the one-year lagged Laspeyres price index as a 

proxy for the expected aggregate crop price. For the aggregate crop acreage models, we do not 

use the futures price as a proxy because futures markets do not exist for all of the ten field crops 

considered in the present study. 

Effective Ethanol Capacity 

We measure the effect of the establishment of an ethanol plant on the farm gate price and 

therefore on crop acreage by constructing an effective ethanol capacity variable for each county. 

Studies differ in the methods they used to measure the effective ethanol capacity. Fatal and 

Thurman (2014) develop a measure of effective ethanol capacity for a county by weighting 

ethanol capacity by its distance to the centroid of the county while Brown et al. (2014) use a 

county centroid’s distance to the nearest ethanol plant as the effective ethanol plant capacity for 
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the county. These two studies implicitly assumes that all corn production is concentrated at the 

centroid of a county. Motamed et al. (2016) define neighborhood capacity for a grid cell as the 

sum of the capacity within a 100-km radius around the grid cell, implying that all ethanol 

capacity within the radius has the same effect on a grid cell’s acreage irrespective of the distance 

to the grid cell.  

In contrast, similar to Miao (2013), we assume that an ethanol plant has a radial 

catchment area for their feedstock to minimize transportation costs. USDA (2015) reports that 

about half of the ethanol plants draw its feedstock within a 25-mile radius. Therefore, we first 

construct a buffer zone with a 25-mile radius for each ethanol plant and calculate the portion of 

the buffer zone that falls within a county. Thus, the effective ethanol capacity from this plant in 

the county is defined by the plant’s capacity times the buffer area that falls in the county divided 

by the total area of the plant’s buffer zone.9 By aggregating the effective ethanol capacity from 

all plants with buffer zones falling in the county we obtain the total effective ethanol capacity of 

that county. Unlike the approach in Motamed, McPhail, and Williams (2016), this approach 

uniquely assignes a portion of the plant’s capacity to a county. Figure 2 depicts the locations of 

ethanol plants and the effective ethanol capacity by county in 2003 and 2014. Data for capacity 

of ethanol plants and their geographical locations are readily available in the Renewable Fuels 

                                                           
9 For example, suppose an ethanol plant’s capacity is 100 million-gallon per year (MGPY). We 

draw a circle around this plant with a radius of 25 miles. If, for instance, 200 square miles of the 

circle area falls in county j then the effective ethanol capacity of this plant for county j is 

100 200 /1963.5 10.2× = MGPY, where 1,963.5 square miles is the area of a circle with radius 

of 25 miles.  
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Association annual industry outlook and the U.S. Department of Energy Alternative Fuel Data 

Center, respectively. We restrict the analysis to plants that use corn grain as feedstock. 

Other Control Variables 

We also control for fertilizer price because fertilizer is an important input for agricultural 

production. Fertilizer costs make up about an average of 29% of the total operating costs for all 

major field crops and about 42% for corn (USDA 2016). We therefore expect that fertilizer 

prices will affect crop acreage decisions by affecting the net returns from crop production and 

the relative returns of various crops. Data on annual national fertilizer price index between 2003 

and 2014 are obtained from USDA Economic Research Service. The expected sign of the 

coefficient of fertilizer price index is ambiguous because it can be negative if fertilizer leads 

farmers to switch to crops that require less fertilizer to save input costs or it could be positive as 

farmers substitute land for fertilizer and expand crop acreage. Here we use one-year lagged 

fertilizer price index because farmers typically purchase fertilizer in the fall prior to the spring 

planting season (Borchers et al. 2011).  

Moreover, county-specific monthly precipitation in millimeters for the months of March, 

April, and May between 2003 and 2014 are reported by Parameter-elevation Regression on 

Independent Slopes Model (PRISM).10 We also control for the county-level population density 

because increasing population might compete for agricultural land, so we would expect the 

coefficient of population density to have a negative sign. County-specific population density data 

from 2003 to 2014 are obtained from the U.S. Census Bureau’s County Intercensal Datasets: 

                                                           
10 The weather data are aggregated to the county-level by Ag-Analytics.org (available online at: 

www.ag-analytics.org; accessed July 24, 2017). 

 

http://www.ag-analytics.org/
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2000-2010 and County Population Totals Datasets: 2010-2016.11 Linear and quadratic time trend 

variables are also included to control for technological advances (e.g., yield increases) over time.  

Instrumental Variables 

To address the potential endogeneity of crop prices, we use one-year lagged corn stock as an 

instrumental variable for corn price and one-year lagged aggregated crop stock as an instrument 

for the Laspeyres price index. Lagged stock is a valid instrumental variable for crop prices 

because, as illustrated in Wright (2011) and Roberts and Schlenker (2013), crop stocks in the 

previous year will affect the current year crop supply (i.e., lagged stock plus new production), 

and hence is correlated with expected crop prices. Farmers then respond to expected crop prices 

to make acreage decisions. There does not appear to be any evidence to suggest that lagged 

stocks will cause changes in current year acreage through channels other than crop prices. One 

concern with using lagged crop stock as an instrumental variable is the potential autocorrelation 

of the stock time series. As pointed out by an anonymous referee, if the crop stock time series is 

autocorrelated then the lagged crop stock will be more likely to be correlated with the current 

error term, and therefore the exclusion restriction for lagged stock as a valid instrument will be 

violated. The national-level stocks are less prone to autocorrelation than the state-level crop 

stocks are, because local shocks on stocks may cancel each other across regions.12 Therefore, we 

                                                           
11 The two datasets are available at https://www.census.gov/programs-surveys/popest/data/data-

sets.All.html (accessed on July 4, 2017). 

12 We are indebted to an anonymous referee for suggesting national-level stock as an 

instrumental variable because it is less likely to be autocorrelated. 

 

https://www.census.gov/programs-surveys/popest/data/data-sets.All.html
https://www.census.gov/programs-surveys/popest/data/data-sets.All.html
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consider both state-level and national-level stocks as candidates for instruments and perform 

autocorrelation tests for these two variables. Details about the procedures and results of the tests 

are presented in the online Appendix A. 

From the test results we find that we cannot reject the null hypothesis that there is no 

autocorrelation for state-level or national-level corn stocks. Therefore, we can use either of these 

two variables as an instrumental variable for corn price in our analysis. Since state-level corn 

stocks have larger spatial variation than do the national-level corn stocks, we use the state-level 

stock variable as an instrument in our preferred specification of the corn acreage models and 

present the results that use the national-level corn stock as an instrument as part of the robustness 

check. The test results also show that while for the national-level aggregate crop stock we cannot 

reject the null hypothesis that the time series is not autocorrelated, we can reject the same null 

hypothesis for the state-level aggregate crop stock. As a result, we use the national-level 

aggregate crop stock as the instrumental variable for the crop price index in the preferred 

specification of the aggregate acreage models. 

Data for crop stocks are obtained from NASS of the USDA. The national-level aggregate 

crop stocks of the ten crops are calculated by using an approach similar to that of the Laspeyres 

price index described above. Specifically, we first convert all stocks into tons and then calculate 

the weighted national level stock by using relative weights of commodity values reported by 

NASS (2011, p.2T-32) for the 1990-1992 period. These weights are not available at the state 

level and therefore we determine the state-level aggregate stock as a simple sum of crop specific 

stocks after converting all crop stocks into tons.  

To address the potential endogeneity of the effective ethanol capacity we use the 

interaction term between the total length of railroads within a 25-mile boundary of a county and 
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the annual volume of corn ethanol mandated by the RFS as an instrumental variable.13 We 

believe that this instrument is valid for the following reasons. First, ethanol plant locations are 

correlated with railroad density (Motamed, McPhail, and Williams 2016). This is because about 

60%-70% of ethanol produced in the United States was transported by rail between 2003 and 

2014 (Association of American Railroads 2015). Railroad density affects crop acreage by 

affecting effective ethanol capacity and does not directly affect planting decisions of farmers at 

the county level. As is discussed in Motamed, McPhail, and Williams (2016), railroads were 

“built in already-established farm regions.” In recent decades, trucks displaced railroads as a 

more efficient way for short-distance transportation of grains. Sparger and Marathon (2015) 

report that about 66%-82% of the corn are transported by truck domestically from 2002-2011. 

Therefore, railroad density is unlikely to have a direct influence on farmer’s planting decisions 

other than through its effect on inducing ethanol refinery establishment.  

Second, the amount of ethanol production capacity is expected to be correlated with the 

nationally mandated volume of ethanol production under the RFS because the establishment of 

volumetric mandates by the RFS incentivized the expansion of existing ethanol plant capacity 

and investments in new plants (Lambert et al. 2008). We also expect that the RFS mandate will 

                                                           
13 The area within a 25-mile-boundary of a county covers the county and a 25-mile belt along the 

county boundary but outside the county. The choice of 25 miles is consistent with the assumed 

25-mile radius for each ethanol plant when constructing the effective ethanol plant capacity. 

Railroad length between 2003 and 2014 is obtained from United States National Transportation 

Atlas Database. 
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affect farmers’ crop acreage decisions only through the ethanol plant capacity and crop prices 

which will be controlled for in the econometric models. 

Third, we do not include railroad density and national mandate individually as 

instrumental variables because the year-by-year variation of railroad density is small, while the 

RFS mandate is at the federal level and by definition does not have any spatial variation. The 

spatial variation in railroads will be absorbed by county fixed effects and the temporal variation 

of national mandates will be absorbed by the time trend variables; this would weaken the 

explanatory power of these variables individually if included with county and year variations. 

Instead we include the interaction of these two variables as an instrumental variable for effective 

ethanol capacity because it acquires temporal variation from national mandates and spatial 

variation from railroad density. The interaction term also captures the importance of railroads as 

a determinant of ethanol capacity location increasing only as the volume of ethanol mandated by 

the RFS expanded the demand for corn ethanol. Even though railroads have existed for a long 

time, ethanol capacity increased significantly only after the RFS was established. Therefore, we 

believe that the interaction of railroad density and volume of ethanol mandated by the RFS is 

likely to be strongly correlated with the effective ethanol capacity in a county which is a proxy 

for both location and capacity of ethanol production.  

We use natural gas prices as an instrumental variable for the fertilizer price index for two 

reasons. First, the natural gas price is correlated with fertilizer price because natural gas is one of 

the most important raw material for various nitrogen fertilizers (Huang 2007). Second, the 

natural gas price does not directly affect crop acreage in a county because it is not directly used 

in farming operations. The primary direct energy sources for different farming operating 

practices are gasoline, diesel, and electricity (Marshall et al. 2015), and the prices of these energy 
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sources are affected by crude oil prices which are mainly determined by worldwide geopolitical 

and economic events (USEIA 2016). So we expect that the natural gas price only affects 

cropland acreage through fertilizer prices.14 Annual data on natural gas price are obtained from 

U.S. Energy Information Administration (USEIA 2017).  

In the regression analyses, we use the Kleibergen-Paap rk LM test to detect under-

identification and use the Cragg-Donald Wald F statistic and the Kleibergen-Paap Wald rk F 

statistic to examine if the instruments are weak.15 Over-identification does not apply here 

because we have exactly the same number of instruments as the endogenous variables.  

V. REGRESSION RESULTS 

                                                           
14 While natural gas price could affect the price of electricity, its effect on crop acreage through 

affecting electricity price is likely to be small, since electricity costs for a farm are a fixed cost 

and also a relatively small share of overall costs (ERS 2018). Therefore, the link through which 

natural gas price affect electricity price and then affect crop acreage would be weak and 

negligible. 

15  Kleibergen-Paap rk LM statistic is built on a Langrange-Multiplier (LM) test to determine if 

the excluded instruments are correlated with the endogenous variables. The Cragg-Donald Wald 

F statistic and the Kleibergen-Paap Wald rk F statistic are based on the first-stage F statistic to 

determine if the excluded instruments are only weakly correlated with the endogenous variables. 

We refer readers to Baum, Schaffer, and Stillman (2007) and Bazzi and Clemens (2013) for 

further details about these tests. The Kleibergen-Paap rk LM statistic, Cragg-Donald Wald 

statistic and Kleibergen-Paap rk Wald statistic have a chi-squared distribution with one degree of 

freedom. 



24 
 

For each of the corn acreage and total acreage regression models, we estimate four specifications 

as follows. Model (1) is a fixed effects (FE) model, which assumes that all variables are 

exogenous. Model (2) is a fixed-effects model with instrumental variables (IVs) (FE-IV) and is 

the preferred model because it controls for endogeneity of various explanatory variables as 

described above. Models (3) and (4) are the same as Model (2) except that Model (3) excludes 

effective ethanol capacity as an explanatory variable whereas Model (4) excludes crop price. 

Estimating Models (3) and (4) allows us to examine the presence of omitted variable bias when 

either crop price or ethanol capacity are excluded as determinants of crop acreage over the 2003-

2014 period. These four models account for spatial autocorrelation by estimating standard errors 

robust to spatial aotucorrelation and heteroskedasticity (Conley, 1999). For the corn acreage 

models, corn price is used whenever we control for output price (see Table 2). For total acreage 

models we use the total crop price index to control for output price (see Table 3).  

Results from Hausman’s endogeneity tests for crop price, effective ethanol capacity, and 

fertilizer price index show that both crop price and effective ethanol plant capacity are 

endogenous across all the corn acreage and aggregate crop acreage models (p-value < 0.05). For 

the fertilizer price index, results show that we can reject the null hypothesis that the variable is 

exogenous in corn acreage models (p-value < 0.05) but we fail to reject this null hypothesis in 

the total acreage models (p-value = 0.1661). One possible explanation for this is that fertilizer 

accounts for a large share of total production costs for corn. Therefore, changes in corn acreage 

may cause fluctuation in fertilizer prices. However, many of the other crops included in total 

acreage models are not fertilizer intensive (e.g., soybeans) and the error terms in the aggregate 

acreage models may include opposing factors that weaken the correlation between the fertilizer 

price index and the error term. Therefore, the fertilizer price index is endogenously determined 
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with corn acreage but not with aggregate cropland acreage. To be consistent across models, 

however, we also present the total cropland acreage model treating fertilizer price index as 

endogenous in the robustness checks.  

Corn Acreage 

Table 2 presents the regression results for the four corn acreage models. By comparing results 

under Model (1) and those under Model (2) we can see that ignoring the endogeneity of price 

variables and of effective ethanol capacity will attenuate the estimated coefficients toward zero, 

underestimating the true underlying effects. When we do not control for effective ethanol plant 

capacity, we find that a one-dollar increase in corn received price increases corn acreage by 

3,494 acres (or about 8.6% of average corn acreage) in a county (see Model (3)). If we do not 

control for corn price, a one-million-gallon increase in the effective ethanol plant capacity in a 

county increases corn acreage by 3,200 acres in this county (see Model (4)). Both of these effects 

are significantly larger than those obtained in Model (2), indicating a positive omitted variable 

bias due to the positive correlation between corn price and ethanol capacity. All the models that 

involve instrumental variables in Table 2 pass the under-identification test and weak instruments 

tests. The p-values of the Kleibergen-Paap rk LM statistic are much smaller than the critical 

value of 0.01 showing that we can reject the null of no correlation between the endogenous 

variables and the instrumental variables at 1% significance level. Moreover, the Cragg-Donald F 

Wald statistic and Kleibergen-Paap Wald rk F statistic are much larger than 10 in most cases, 

indicating that we can safely reject the null hypothesis that the instrumental variables are just 
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weakly correlated with the endogenous variables (Stock and Yogo 2005).16 Associated first stage 

results of the regressions are presented in Appendix B.   

Results under Model (2) in Table 2, the preferred model for corn acreage, show that corn 

price and effective ethanol plant capacity have positive and statistically significant effect on corn 

acreage. We find that, all else equal, if effective ethanol plant capacity in a county increases by 

one million gallons then corn acreage in this county will increase by about 884 acres (or by about 

2.2% if evaluated at sample mean of county corn acreage of 40,400 acres). A one-dollar increase 

in corn received price, which represents about a 30% increase in average corn price, will increase 

corn acreage in a county by 2,532 acres, about 6.3% of average corn acreage in a county. Both 

the fertilizer price index and population density have a negative and statistically significant effect 

on corn acreage. April precipitation has a statistically significant and negative impact on corn 

acreage across all specifications, which is intuitive because heavy precipitation in April can 

delay planting of corn. May precipitation has a positive and statistically significant effect on corn 

acreage. The magnitude of May precipitation’s effect is much smaller than that of April 

                                                           
16 Table 5.1 in Stock and Yogo (2005) presents the critical values for the weak instrument test 

based on Cragg-Donald Statistic when the number of endogenous variables ranges from 1 to 3 

and the number of instrumental variables ranges from 3 to 30, among which the largest critical 

value is 11.32 if the maximum tolerable bias of the IV estimator over OLS is 10%. All the 

Cragg-Donald Wald F statistic and the Kleibergen-Paap Wald rk F statistic values in Tables 2-5 

are much larger than 11.32, indicating that the bias was less than 10% compared to OLS and thus 

we can reject the null hypothesis of a weak correlation between the instrumental variables and 

the endogenous variables.  
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precipitation (0.00766 vs. -0.0278). However, the effects of March precipitation on corn acreage 

are statistically insignificant.   

Total Acreage 

Results for the total cropland acreage models are presented in Table 3. Here the Laspeyres price 

index and the effective ethanol capacity are treated as endogenous whenever the instrumental 

variable approach is utilized. However, the fertilizer price index is treated as exogenous because, 

as we have discussed above, the Hausman’s endogeneity test does not reject the null hypothesis 

that the fertilizer price index is exogenous in the total acreage models. Associated first stage 

results of the regressions are presented in Appendix B. Since the coefficient of the quadratic term 

of time trend is not statistically significant in most cases, we do not include it in aggregate 

acreage models. 

By comparing results under Models (1) and (2) in Table 3 we find that if the endogeneity 

of the crop price index and of the effective ethanol production capacity is not considered then the 

estimates will be significantly biased. Moreover, unlike the finding in the case of the corn 

acreage models, the omitted variable biases shown by Models (3) and (4) for the total acreage 

regressions in Table 3 are positive but quite moderate in magnitude.       

The following discussion on the determinants of aggregate acreage is based on Model (2) 

in Table 3, the preferred model. We find that price and effective ethanol capacity have a positive 

and statistically significant effect on aggregate cropland acreage. The coefficient estimates in 

Model (2) indicate that a one million-gallon increase in effective ethanol capacity in a county 

increases aggregate crop acreage of that county by 599 acres (about 0.65% of aggregate cropland 

if evaluated at the mean of aggregate crop acreage). A one-unit increase in the crop price index 
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contributes to about 4,484 acres of increase in aggregate cropland acreage, which is about 4.8% 

of average aggregate cropland acreage in a county.  

The coefficient of fertilizer price is negative and statistically significant in Model (2) of 

Table 3. The estimated coefficient, -0.0354, in Model (2) indicates that if evaluated at the sample 

means then a 1% increase in the fertilizer price index leads to about 0.086% (about 80 acres) 

decrease in aggregate cropland acreage of a county. We can see that the elasticity of aggregate 

cropland acreage with respect to the fertilizer price index is about 0.086. Given that, on average, 

the fertilizer price index increases about 9% annually over 2003-2014, then ceteris paribus, the 

aggregate acreage in a county will decrease about 720 acres due to fertilizer price increases. 

Population density has a statistically insignificant effect on aggregate cropland acreage. The 

linear time trend variable, however, has a negative and statistically significant coefficient, which 

reflects increasing competition for land from non-agricultural sectors and changes in farm 

technology (Nickerson and Borchers 2012). 

Robustness 

Tables 4 and 5 investigate the robustness of the effects of crop prices and effective ethanol capacity 

on corn acreage and aggregate crop acreage, respectively.17 We find that the results are robust to 

various specifications of explanatory variables, instrumental variables, and datasets. 

We first examine the robustness of the results of the preferred corn acreage model (i.e., 

Model (2) in Table 2) to an unbalanced panel dataset in which a county-year observation is 

                                                           
17 In addition to the robustness tests presented in this section, we also conduct model validation 

for both preferred corn acreage model and preferred aggregate acreage model. Due to space 

limitation these results are presented in Appendix C. 
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excluded from the dataset if there is no corn acreage reported by NASS for that county-year.18 

The results are presented in column (1) of Table 4, from which we can see that the coefficients 

under the unbalanced panel dataset are similar in magnitude and statistical significance to those 

under the balanced panel dataset.    

We then examine the robustness of the results of the corn acreage model to using corn 

futures price as a proxy for the expected price. The results are presented in column (2) in Table 

4. We find that both the coefficients of corn futures price and effective ethanol capacity are 

positive and statistically significant at 1% level, although the magnitude of the coefficients is 

smaller than that in Model (2) in Table 2.    

Columns (3) to (5) in Table 4 present the regression results of corn acreage models when 

we use alternative instrumental variables for the received corn price. These alternative 

instruments are state-level lagged corn yield shocks, national-level lagged corn yield shocks, and 

national-level lagged corn stocks.19 Lagged yield shocks are used as an instrument for crop 

                                                           
18 Recall that Model (2) in Table 2 is based on a balanced panel dataset in which missing acreage 

values are assumed to be zero. Removing these counties with missing acreage values reduces the 

sample size from 24,924 to 20,825, a 16% decrease.   

19 State-level corn yield shocks are residuals obtained by regressing state level yield over 1950-

2017 on linear time trend. The regression is performed state by state to allow a unique time trend 

for each state. National-level corn yield shocks are residuals obtained by regressing the national-

level corn yields over 1950-2017 on linear time trend. Data for state-level corn yields, national-

level corn yields, and national-level corn stocks are obtained from NASS. 
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prices by following Roberts and Schlenker (2013).20  Lagged national-level corn stock is used as 

an instrument for corn price to be consistent with the instrumental variable approach used in the 

aggregate acreage models. 

Column (3) in Table 4 presents the results based on specifications using state-level 

lagged yield shocks as an instrument for corn received price. It shows that the coefficients of 

corn price and effective ethanol capacity are statistically significant and qualitatively the same as 

those in Model (2) in Table 2. The coefficient of corn price is larger in Column (3) of Table 4 

than that in Model (2) in Table 2 whereas the coefficient of effective ethanol capacity is smaller. 

Columns (4) and (5) present the results from specifications using national-level corn stocks and 

yield shocks as instruments for corn price, respectively. The estimates are qualitatively the same 

as in our preferred model except that when the national-level corn stock is used as the instrument 

for corn price, then the coefficient of the effective ethanol capacity becomes statistically 

insignificant.     

For the total acreage models, we examine the effect of corn price on aggregate crop 

acreage to investigate the extent to which changes in corn price alone led to changes in land use 

at the extensive margin. The results are presented in column (1) in Table 5. We find that the 

coefficient of received corn price is not statistically significant, possibly because the effect of 

corn price is largely at the intensive margin and leads to substitution of crop acreage among 

                                                           
20 We check whether corn yield shocks are autocorrelated by conducting autocorrelation tests for 

both state-level and national-level corn yield shocks. Results show that we cannot reject the null 

hypothesis that no autocorrelation exists in the two types of corn yield shocks (see Appendix A 

for details about the tests procedures and results). 
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crops. However, column (1) shows that total cropland acreage does still respond positively and 

statistically significantly to effective ethanol capacity when we control for corn price in the 

aggregate acreage model; its magnitude is slightly larger than that in Model (2) in Table 3 (i.e., 

the preferred model for aggregate acreage).  

To check the robustness of the aggregate acreage results with respect to county selection 

in the sample, we further remove county-years with zero aggregate crop acreage from the dataset 

and then conduct the analysis with everything else being the same as that in Model (2) of Table 

3. The results presented in column (2) of Table 5 are robust to this change in the data. Estimates 

in column (3) show that using state-level aggregated crop stocks as an instrument for the price 

index only creates a negligible change in the estimated coefficient of effective ethanol capacity 

(0.604 vs. 0.599), although it increases the estimates of the price index coefficient from 4.484 to 

5.656, when compared with Model (2) in Table 3. Lastly, to be consistent with corn acreage 

models in which the fertilizer price index is treated as endogenous, we also estimate the 

aggregate acreage regression by treating the fertilizer price index as endogenous and by using 

natural gas price as its instrument. Results are presented in column (4) of Table 5. We find that 

our results are robust to this change in specification. 

Elasticities of Acreage with Respect to Crop Price and Effective Ethanol Capacity 

To put the magnitude of the land-use change effects of crop prices and effective ethanol capacity 

into perspective, we compute the own-price acreage elasticities and the acreage elasticity with 

respect to the effective ethanol capacity at the sample means using parameter estimates from the 

models presented in Tables 2 to 5. The results are shown in Table 6. Based on the preferred corn 

acreage model (i.e., Model (2) in Table 2) and its associated models for robustness checks (Table 

4), the elasticity of corn acreage with respect to corn received price ranges from 0.18 to 0.29 (see 
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the upper panel in Table 6), which is comparable to Lin and Dismukes (2007) and in the lower 

end of estimations by previous studies ranging from 0.05 to 0.95. We refer readers to Miao, 

Khanna, and Huang (2016) for a summary of previous estimates of corn acreage’s elasticity with 

respect to corn price. In addition, based on the preferred model for the aggregate crop acreage 

(i.e., Model (2) in Table 3) and its associated models for robustness checks (Table 5), the price 

elasticity of aggregate cropland acreage with respect to the Laspeyres price index is 0.07-0.08, 

which is close to the estimate of 0.077 obtained by Roberts and Schlenker (2013). 

We find that in most cases the corn acreage elasticity with respect to effective ethanol 

plant capacity lies in the range of 0.03 to 0.1, which implies that 1% increase in a county’s 

effective ethanol plant capacity would cause 0.03% to 0.1% increase in corn acreage in that 

county. If corn prices were omitted from the regression, then the elasticity of corn acreage with 

respect to the effective ethanol capacity would be as high as 0.36 (calculated based on Model (4) 

in Table 2), about four to twelve times larger than the estimates under the preferred model and its 

associated robustness check models. This is because the coefficient of effective ethanol capacity 

under Model (4) of Table 2 is significantly larger due to the positive omitted variable bias. 

Therefore, omitting corn price when estimating the effect of ethanol plant proximity on corn 

acreage leads to an over-estimate of that effect. This finding may partially explain why the corn 

acreage elasticity with respect to ethanol production capacity in our study is much lower than 

that in Motamed, McPhail, and Williams (2016) which does not include crop price as an 

explanatory variable in the econometric analysis. Motamed, McPhail, and Williams (2016) report 

that the corn acreage elasticity with respect to effective ethanol capacity ranges from 1 to 1.5, 

which is about 10 to 15 times larger than what we find in our study. Although not directly 

comparable because data sources and definitions of the effective ethanol capacity differ in the 
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two studies, the large difference indicates the importance of explicitly controlling for crop prices 

when estimating ethanol production’s impact on crop acreage. 

The estimated elasticity of total crop acreage with respect to effective ethanol capacity in 

the preferred model and associated specifications for robustness checks ranges between 0.02 and 

0.03 (see the lower panel of Table 6). We also find that the estimated elasticity of aggregate crop 

acreage with respect to crop price is much lower than that for corn acreage. This is consistent 

with intuition because the establishment of a corn-based ethanol plant can be expected to first 

increase corn acreage by converting land use from other crops to corn and then by conversion of 

non-cropland to corn. Expansion in corn acreage through displacement of other crops could 

expand total acreage as the displaced crops may shift to marginal land; however, these changes 

in total crop acreage caused by an increase in ethanol capacity are secondary effects. For the 

aggregate acreage models, the exclusion of crop price from the specification only leads to a 

slightly higher estimate of the acreage elasticity with respect to ethanol capacity than that under 

the preferred model (0.026 vs. 0.024). This is because the coefficient of ethanol capacity under 

the model excluding price index (i.e., Model (4) in Table 3) is only slightly higher than that 

under the preferred model (i.e., Model (2) in Table 3). 

Effects of Crop Price and Ethanol Plant Proximity on Land-Use Change 

We use the estimates from Model (2) in Tables 2 and 3 (the preferred models) to compute 

changes in corn acreage and total cropland acreage due to the changes in state-specific crop 

prices and county-specific effective ethanol production capacity between different periods. For 

instance, to calculate the change in corn acreage in a county during period 2008-2012 due to the 

effective ethanol capacity, we use the coefficient of effective ethanol capacity from Model (2) in 

Table 2, i.e., 0.884, and multiply it with the change in the effective ethanol capacity in each 
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county between 2008 and 2012 to obtain county-specific changes in acreage over this period. 

The same procedure is applied when calculating changes in aggregate acreage due to effective 

ethanol capacity. The sum of changes in each county provides an estimate of the change due to 

the expansion in ethanol capacity at national level, holding all else constant (Table 7). The 

spatial distribution of these changes at a county level is illustrated in Figures 3 and 4. 

From Table 7 we see that the increase in corn acreage due to the change in corn price 

over the period 2003-2014 is about 5.9 million acres whereas the increase in corn acreage due to 

increase in ethanol capacity is about 8.8 million acres. This finding indicates that the impact of 

corn price is surpassed by that of ethanol production capacity in that period. In the period 2003-

2012, however, the opposite is true because corn prices were significantly higher in 2012 than in 

2014 (see Panel (c) in Figure 1). The same pattern carries over when comparing the change in 

corn acreage over 2008-2014 with that over 2008-2012, or when comparing total acreage 

changes over these periods.  

From Table 7 we also find that, in most cases, the impact of effective ethanol capacity or 

of crop price on corn acreage is much larger than that on aggregate acreage, indicating that corn 

acreage is more sensitive to ethanol production capacity and crop prices than is aggregate 

acreage. For instance, our estimated parameters imply that the expansion in corn ethanol capacity 

alone, ceteris paribus, led to an 8.8 million acre (11.4%) increase in corn acreage and a 6.9 

million acre (2.8%) increase in total crop acreage over 2003-2012. In the same period, changes in 

corn price and the aggregate crop prices led to much larger changes in corn acreage and total 

crop acreage, 13.9 million acres and 10.5 million acres, respectively. Similarly, over the 2008-

2012 period, the effect of the change in crop price index was smaller than the effect of change in 

corn price, indicating that most of the effect of a change in corn price was at the intensive margin 
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and not at the extensive margin. The increase in the crop price index over the 2008-2012 period 

led to only a 1.9% increase in total acreage and this effect was significantly lower over the 2008-

2014 period (0.5%). Therefore, unlike the effect of the expansion in corn ethanol capacity, the 

effect of crop price on land use was largely reversed by the downturn in crop prices after 2012. 

Maps in Figure 3 show the predicted change in county-level corn acreage due to changes 

in corn price or in effective ethanol capacity while holding all other variables constant. During 

the period 2008-2012, the increase in corn acreage due to corn price increase was evenly 

distributed across counties (see Map (a) in Figure 3). However, over the period 2008-2014, the 

change in corn acreage due to changes in corn price differs considerably across states because of 

heterogeneity in changes in received price across states.  This heterogeneity was particularly 

evident in states outside the Midwest that are relatively smaller producers of corn. The impact of 

effective ethanol plant capacity is observed mainly in the Midwest because this is where the 

majority of ethanol plants are located (see Maps (b) and (d) in Figure 3). From map (d) in Figure 

3 we also can see that the eastern part of the Dakotas and Nebraska had large increase in corn 

acreage due to the expansion in effective ethanol capacity over the period 2008-2014. We 

observe a similar pattern of effects on aggregate crop acreage across counties and periods caused 

by changes in crop prices and ethanol plant capacity (see Figure 4).     

VI. CONCLUSIONS 

We estimate the land use change effects of corn ethanol plant proximity and crop prices with a 

nationwide county-level panel dataset for 2,535 counties over 2003-2014. Our empirical methods 

allow us to identify the causal effects of ethanol plant proximity and separate these effects from 

those of crop prices. By covering the 2003-2014 period over which there was substantial 

fluctuation in crop prices we also examine the extent to which changes in land use due to crop 
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prices. This study differs from the existing literature that has focused on analyzing the direct 

effects of corn ethanol production on land use in its vicinity without explicitly controlling for the 

effect of crop prices. Given the small but positive correlation between crop prices and county-

level effective ethanol production capacity, our study avoids the omitted variable bias that results 

in an overestimate of the effect of corn ethanol production on crop acreage when there is no 

control for crop price effects. 

We find that corn ethanol production has a positive and statistically significant direct 

effect on corn acreage and aggregate cropland acreage at the county level. However, land use is 

fairly inelastic to both changes in ethanol production capacity and in crop prices, resulting in a 

small indirect effect on corn acreage and total crop acreage. A 1% increase in the effective 

ethanol capacity in a county increases corn acreage in that county by about 0.03%-0.1% and total 

acreage by about 0.02-0.03%. This estimate of elasticity is smaller than that obtained by previous 

studies which can be as large as 1.5. A 1% increase in corn price increases corn acreage in a 

county by 0.18%-0.29%, which is at the lower end of the range of the estimates of elasticity 0.1-

0.95 obtained by previous studies (see Table 1 in Miao, Khanna, and Huang 2016). The elasticity 

of aggregate crop acreage with respect to the aggregate crop price index is about 0.07-0.08, close 

to the estimate of 0.077 obtained by Roberts and Schlenker (2013).  

Overall we find a 3.1% increase in corn acreage and a 0.9% increase in total acreage due 

to expansion in corn ethanol capacity over the 2008-2014. Over the same period, the change in 

corn acreage was -0.004% and in total acreage was 0.5% due to crop price changes. Our 

findings, therefore, show that the overall effects of corn ethanol capacity and price changes on 

crop acreage over 2008-2014 were relatively small. Our analysis estimates the marginal effect of 

a unit increase in ethanol production and in crop price on the conditional mean of crop acreage 
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across counties; these marginal impacts may, however, differ across counties. We leave it to 

future research to quantify the heterogeneity in this marginal impact.21 Nevertheless, our findings 

show that while the land use change caused by the expansion in corn ethanol capacity persisted 

even after 2012 because ethanol capacity had been growing, the effect of crop price on crop 

acreage was largely reversed by the downturn in crop prices after 2012. Analyzing the reasons 

underlying the reduction in crop prices since 2012 despite the relatively constancy in corn 

ethanol production is beyond the scope of this paper. We leave the analysis of the dynamic 

effects of corn ethanol production on crop prices and therefore on land use change to future 

research. 

  

                                                           
21 We are thankful to an anonymous referee for this point. 
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Table 1. Summary Statistics of Variables 
Variables Mean SD Min Max 
Dependent variables     

Corn acreage (1,000 acres) 40.4 55.6 0.0 397.0 
Aggregate cropland acreage (1,000 acres) 92.8 111.9 0.0 926.2 
Explanatory variables     

Corn received price ($/bushel) 3.3 1.1 1.6 6.2 
Corn futures price ($/bushel) 4.3 1.5 2.2 7.3 
Laspeyers price index 1.4 0.4 0.8 2.8 
Effective ethanol capacity (mil. gallons) 3.7 11.8 0.0 164.8 
Fertilizer price index (base year 1990-92) 225.2 78.2 108.0 336.0 
Population density (people/sq miles) 132.0 324.3 0.3 5598.9 
March precipitation (mm/month) 73.5 50.6 0.0 506.4 
April precipitation (mm/month) 91.93 55.0 0.0 545.6 
May precipitation (mm/month) 102.7 57.0 0.0 434.2 
Instrumental variables     

State level corn stocks (mil. Bu) 389.5 554.021 0 2,177.5 
National level corn stocks (mil. Bu) 10,007.4 893.8 8,032.7 11,235.2 
State level corn yield shocks (bu) -1.5 18.7 -73.5 36.8 
National corn yield shocks (bu) -0.2 12.3 -33.4 18.2 
National weighted stocks (1,000 tons) 228,827.6 91,635.7 192.1 348,346 
State level sum of stocks (1,000 tons) 4412.7 4755.0 0.0 18543.2 
Railroad length (miles in 25-mile boundary) 550.3 316.7 0.0 3,401.3 
RFS final rule (billion gallons/year) 7.9 5.5 0.0 14.4 
Natural gas price ($/1,000 cubic feet) 6.6 1.9 3.7 9.9 
Notes: The sample for total cropland acreage covers 2,535 counties and the sample for corn 
acreage covers 2,077 counties. The temporal framework is 2003-2014. Prices are in 2000 
dollars.  
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Table 2. Determinants of Corn Acreage (State-level corn received price as the output price) 
Corn acreage (1) FE (2) FE-IV (3) FE-IV (4) FE-IV 
Lagged corn received price 1.738*** 2.532*** 3.494***  
 (0.123) (0.263) (0.262)  
 (0.138) (0.3736) (0.4345)  
Effective ethanol capacity 0.135*** 0.884***  3.200*** 
 (0.0332) (0.134)  (0.396) 
 (0.0255) (0.1449)  (0.807) 
Lagged fertilizer price index -0.0304*** -0.238*** -0.447*** -0.677*** 
 (0.00280) (0.0245) (0.0394) (0.104) 
 (0.0037) (0.0286) (0.0657) (0.1697) 
Population density -0.0378*** -0.0224*** -0.0484*** 0.0283* 
 (0.00539) (0.00603) (0.00586) (0.0161) 
 (0.0036) (0.0059) (0.0056) (0.0203) 
March Precipitation -0.00710*** 0.00329 -0.00274 0.0407*** 
 (0.00120) (0.00224) (0.00217) (0.00604) 
 (0.0015) (0.003) (0.0028) (0.0121) 
April Precipitation -0.00480*** -0.0278*** -0.0442*** -0.0799*** 
 (0.00131) (0.00322) (0.00423) (0.0117) 
 (0.0016) (0.0039) (0.0069) (0.0197) 
May Precipitation -0.00860*** 0.00764*** 0.0265*** 0.0502*** 
 (0.00102) (0.00257) (0.00394) (0.00970) 
 (0.0014) (0.0031) (0.0062) (0.0157) 
Linear time trend 1.800*** 8.120*** 16.45*** 21.48*** 
 (0.125) (0.833) (1.413) (3.404) 
 (0.1693) (0.9321) (2.3382) (5.16) 
Quadratic time trend -0.0843*** -0.252*** -0.485*** -0.562*** 
 (0.00696) (0.0232) (0.0390) (0.0874) 
 (0.0085) (0.0263) (0.0638) (0.1323) 
N 24,924 24,924 24,924 24,924 
Kleibergen-Paap rk LM statistic 
(p-value)  - < 0.001 < 0.001 < 0.001 
Cragg-Donald Wald F statistic  - 97.298 104.235 12.887 
Kleibergen-Paap rk Wald F statistic - 34.946 247.915 51.779 

Notes: * 10% level, ** 5% level, *** 1% level. The sample mean of corn acreage is 40.4 thousand acres. 
Un-adjusted standard errors are included in the first set of parentheses under each coefficient; Conley 
Standard errors are included in the second set of parentheses under each coefficient. Specifications of the 
models: (1): FE, (2): FE-IV (Instrumental variables: state-level corn stocks, railroad density × RFS 
mandated volume of corn ethanol, natural gas price), (3): FE-IV excluding effective ethanol capacity in a 
county (Instrumental variables: state-level corn grain stocks, natural gas price), and (4): FE-IV excluding 
corn price (Instrumental variables: railroad density × RFS mandated volume of corn ethanol, natural gas 
price). Kleibergen-Paap rk LM statistic, Cragg-Donald Wald statistic and Kleibergen-Paap rk Wald 
statistic are distributed as chi-squared with degrees of freedom of 1.  
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Table 3. Determinants of Total Cropland Acreage (Laspeyres price index as output price) 
Total cropland acreage (1) FE (2) FE-IV (3) FE-IV (4) FE-IV 
Lagged Laspeyres price index 0.303 4.484*** 4.647***  
 (1.515) (1.001) (0.990)  
 (0.7297) (1.2768) (1.2533)  
Effective ethanol capacity 0.00864 0.599***  0.657*** 
 (0.0817) (0.205)  (0.205) 
 (0.0345) (0.1484)  (0.1565) 
Lagged fertilizer price index -0.00921 -0.0354*** -0.0265*** -0.0183*** 
 (0.00978) (0.00605) (0.00577) (0.00465) 
 (0.0049) (0.0074) (0.0071) (0.0062) 
Population density -0.00903 0.00322 -0.00854 0.00367 
 (0.0101) (0.00786) (0.00635) (0.00784) 
 (0.0043) (0.0061) (0.0046) (0.0066) 
Linear time trend -0.468* -0.629*** -0.511*** -0.594*** 
 (0.247) (0.111) (0.098) (0.113) 
 (0.117) (0.133) (0.127) (0.1412) 
N 30,420 30,420 30,420 30,420 
Kleibergen-Paap rk LM statistic  
(p-value) - < 0.001 < 0.001 < 0.001 
Cragg-Donald Wald F statistic - 363.052 1.30e4 729.868 
Kleibergen-Paap rk Wald F statistic - 31.261 2.90e4 62.681 

Note: * 10% level, ** 5% level, *** 1% level. The sample mean of aggregate cropland acreage is 92.8 
thousand acres. Un-adjusted standard errors are included in the first set of parentheses under each 
coefficient; Conley Standard errors are included in the second set of parentheses under each coefficient. 
Specifications of the models: (1): FE, (2): FE-IV (Instrumental variables: weighted national crop stocks, 
railroad density × RFS mandated volume of corn ethanol), (3): FE-IV excluding effective ethanol 
capacity in a county (Instrumental variables: weighted national crop stock), and (4): FE-IV excluding 
crop price index (Instrumental variable: railroad density × RFS mandated volume of corn ethanol). 
Fertilizer price index is treated as exogenous. Kleibergen-Paap rk LM statistic, Cragg-Donald Wald 
statistic and Kleibergen-Paap rk Wald statistic are distributed as chi-squared with degrees of freedom of 
1.  
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Table 4. Robustness Checks for Determinants of Corn Acreage  

 
Unbalanced panel 
(1) 

Futures price 
(2) 

State yield shocks 
(3) 

National stocks 
(4) 

National yield shocks 
(5) 

Corn price 3.039*** 1.651*** 3.018*** 3.476*** 3.232*** 
 (0.3726) (0.2355) (0.2989) (0.3183) (0.2863) 
Effective ethanol capacity 0.766*** 0.693*** 0.439*** 0.0199 0.241** 
 (0.1508) (0.1473) (0.13) (0.1083) (0.0973) 
Lagged fertilizer price index -0.251*** -0.197*** -0.154*** -0.0742*** -0.116*** 
 (0.0298) (0.0278) (0.0185) (0.0144) (0.0138) 
Population density -0.0423*** -0.0277*** -0.0322*** -0.0414*** -0.0365*** 
 (0.0080) (0.0059) (0.0055) (0.005) (0.0049) 
March Precipitation -0.00285 0.000643 -0.00391* -0.0107*** -0.00710*** 
 (0.0033) (0.0031) (0.0024) (0.0022) (0.002) 
April Precipitation -0.0320*** -0.0289*** -0.0178*** -0.00841*** -0.0134*** 
 (0.0040) (0.0038) (0.0027) (0.0022) (0.0021) 
May Precipitation 0.00586* 0.00635** -0.000533 -0.00822*** -0.00415*** 
 (0.0030) (0.0031) (0.0022) (0.002) (0.0017) 
Linear time trend 8.523*** 6.469*** 5.553*** 3.138*** 4.416*** 
 (0.9103) (0.9209) (0.5743) (0.4789) (0.4513) 
Quadratic time trend -0.240*** -0.183*** -0.192*** -0.136*** -0.166*** 
 (0.0253) (0.0255) (0.0186) (0.0157) (0.016) 
N 20,825 24,924 24,924 24,924 24,924 
Kleibergen-Paap rk LM statistic  
(p-value) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
Cragg-Donald Wald F statistic 60.150 99.650 62.568 88.007 104.134 
Kleibergen-Paap rk Wald F statistic 31.149 29.496 14.589 17.728 18.916 
Notes: * 10% level, ** 5% level, *** 1% level. Conley standard errors are presented in parentheses. Column (1) is based on the unbalanced panel. 
Column (2) uses corn futures price as the proxy for expected corn price. The instrument for corn price in both Columns (1) and (2) is lagged state-level 
corn stocks. Columns (3), (4) and (5) use lagged state-level corn yield shocks, lagged national-level corn stocks, and lagged national-level corn yield 
shocks, respectively as an instrument for received corn price. Columns (2) to (5) are all based on the balanced panel. Ethanol capacity and fertilizer price 
index in all columns are instrumented by railroad density × RFS mandated volume of corn ethanol and natural gas price, respectively. Kleibergen-Paap rk 
LM statistic, Cragg-Donald Wald statistic and Kleibergen-Paap rk Wald statistic are distributed as chi-squared with degrees of freedom of 1.  
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Table 5. Robustness Check for Determinants of Aggregate Cropland Acreage 

 
Corn received price 
(1) 

Unbalanced panel 
(2) 

State-level stocks 
(3) 

Fertilizer price index 
(4) 

Crop prices 0.0416 6.265*** 5.656* 4.416*** 
 (0.9759) (1.3376) (3.5912) (1.2625) 
Effective ethanol capacity 0.657*** 0.469** 0.604*** 0.688*** 
 (0.1579) (0.157) (0.1530) (0.156) 
Lagged fertilizer price index -0.0188 -0.0425*** -0.0404*** -0.0493*** 
 (0.0141) (0.0081) (0.0144) (0.0148) 
Population density 0.00367 -0.0120 0.00350 0.00508 
 (0.0066) (0.0083) (0.0062) (0.0062) 
Linear time trend -0.594*** -0.474*** -0.645*** -0.372* 
 (0.1415) (0.1488) (0.1403) (0.2582) 
N 30,420 26,607 30,162 30,420 
Kleibergen-Paap rk LM statistic  
(p-value) < 0.001 < 0.001 < 0.001 < 0.001 
Cragg-Donald Wald F statistic 325.823 295.236 323.799 183.184 
Kleibergen-Paap rk Wald F statistic 32.528 28.521 32.442 23.517 
Notes: * 10% level, ** 5% level, *** 1% level. Conley standard errors are presented in parentheses. Column (1) uses state-level received corn 
price as a proxy for crop prices and uses state-level corn stocks as an instrument for the corn price. Columns (2) to (4) use Lagged Laspeyres 
price index as a proxy for crop prices. Column (2) uses the unbalanced panel dataset. Column (3) uses state-level crop stocks as an instrument for 
the crop price. Column (4) treats the lagged fertilizer price index as endogenous and instruments it by natural gas price. Kleibergen-Paap rk LM 
statistic, Cragg-Donald Wald statistic and Kleibergen-Paap rk Wald statistic are distributed as chi-squared with degrees of freedom of 1.  
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Table 6.  Estimates of Acreage Elasticities with Respect to Crop Price and Effective Ethanol Production Capacity 
 
Corn Acreage         

 
Preferred 

specification 
Unbalanced 

panel Futures price 
State yield 

shocks National stocks 
National yield 

shocks 
Corn acreage with respect to:       

   Corn received/futures price 0.21 0.2 0.18 0.25 0.29 0.27 
 (0.03) (0.03) (0.02) (0.02) (0.03) (0.02) 

   Effective ethanol capacity 0.1 0.08 0.08 0.05 0.00 0.03 
 (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) 

 
Total Acreage         

 
Preferred 

specification 
Unbalanced 

panel 
State-level 

stocks 
Fertilizer price 

index  
 

Total acreage with respect to:       
   Laspeyres price index 0.07 0.08 0.08 0.07   
 (0.02) (0.02) (0.01) (0.02)   
   Effective ethanol capacity 0.024 0.02 0.02 0.03    (0.00) (0.01) (0.01) (0.01)   
Notes: Standard errors are presented in the parentheses. For corn acreage, the elasticities under the preferred specification are calculated based on 
regression results under Model (2) in Table 2; and the elasticities in other columns are based on robustness check results reported in Table 4. For 
example, the elasticities in column “Unbalanced panel” are calculated based on regression results reported in the “Unbalanced panel” column in 
Table 4. For total acreage, the elasticities under the preferred specification are calculated based on regression results under Model (2) in Table 3; 
and the elasticities in other columns are based on robustness check results reported in Table 5. For example, the elasticities in column “State-level 
stocks” are calculated based on regression results reported in the “State-level stocks” column in Table 5. 
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Table 7. Changes in Corn Acreage and Total Cropland Acreage due to Changes in 
County-specific Ethanol Capacity and Crop Prices in Different Periods 
Corn acreage change due to: 2003-2014 2003-2012 2008-2014 2008-2012 
   Corn price  5,934 13,932 -3 7,995 

 (35.265) (54.298) (15.7) (40.985) 
 7.6% 17.9% -0.004% 8.5% 
 (0.0005) (0.0007) (0.0002) (0.0004) 

    Effective ethanol capacity 8,844 8,845 2,892 2,892 
 (15.376) (15.257) (6.11) (6.054) 

 11.4% 11.4% 3.1% 3.1% 
  (0.0002) (0.0002) (0.0001) (0.0001) 
Total acreage change due to: 2003-2014 2003-2012 2008-2014 2008-2012 
   Crop price index 6,915 10,541 1,127 4,585 

 (97.584) (120.773) (43.163) (80.233) 
 2.8% 4.3% 0.5% 1.9% 
 (0.0004) (0.0005) (0.0002) (0.0003) 

   Effective ethanol capacity 7,041 6,915 2,271 2,145 
 (14.413) (14.39) (6.051) (5.89) 
 2.9% 2.8% 0.9% 0.9% 

  (0.0001) (0.0001) (0.00003) (0.00002) 
Notes: Standard errors are presented in parentheses. The absolute numbers are in 1,000 acres. The 
percentages are calculated by using the absolute numbers divided by the acreage in the starting year for 
a specific period.  
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Figure 1. Key Variables over 2003-2014 
Notes: (a): aggregate ethanol production capacity in the United States; (b): number of ethanol plants in the 
United States; (c): U.S. corn received price; (d): U.S. aggregate crop price index; (e): U.S. corn acreage; 
(f): U.S. aggregate cropland acreage. 

 
 

 
 



50 
 

2003

2014

Effective capacity (mil. gal.)
0

0-5

5-10

10-20

20-30

>30

Ethanol plants

Railroads  
Figure 2. Effective Ethanol Plant Capacity at County-level, Ethanol Plant Locations, and 
Railroads in 2003 and 2014 
Notes: Unites of effective capacity is million gallons. Shaded areas are counties that have positive 
effective ethanol plant capacity. The darker the shade, the larger the effective ethanol plant capacity. Non-
shaded areas are counties without any effective ethanol plant capacity. 
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Figure 3. Changes in Corn Acreage due to Corn Price or Effective Ethanol Capacity (in 
1,000 acres)                                                     
Notes: Maps (a) and (b) represent changes over the 2008-2012 period. Map (a) is for changes due to corn 
price, and map (b) is for changes due to effective ethanol capacity. Maps (c) and (d) represent changes 
over the 2008-2014 period. Map (c) is for changes due to corn price, and map (d) is for changes due to 
effective ethanol capacity. 
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Figure 4. Changes in Aggregate Crop Acreage due to Crop Price or Effective Ethanol 
Capacity (in 1,000 acres)                          

 Notes: Maps (a) and (b) represent changes over the 2008-2012 period. Map (a) is for changes due to crop 
price, and map (b) is for changes due to effective ethanol capacity. Maps (c) and (d) represent changes 
over the 2008-2014 period. Map (c) is for changes due to crop price, and map (d) is for changes due to 
effective ethanol capacity.  
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Appendix A: Autocorrelation tests for crop stocks and corn yield shocks 

In this appendix we describe the autocorrelation tests for crop stocks and corn yield shocks that 

are used as instrumental variables in the regressions. We consider three types of autocorrelation 

tests here: the Durbin-Watson test, white noise test, and a Wooldridge type test. The Durbin-

Watson test is performed by following Roberts and Schlenker (2013, footnote 17 on page 2275). 

Specifically, we first regress a variable on a linear time trend and then perform the Durbin-

Watson test by using Stata command “estat durbinalt”. The white noise test is performed by Stata 

command “wntestq”. The Wooldridge type test is based on Wooldridge (2002, p.282) who use 

the following property of a time series to test if it is not autocorrelated. That is, if a time series 

{1,.,  .., }tu t T∈  is not autocorrelated, then its first-order difference, 1t t tue u −−≡ , satisfies 

1cov( , ) 0.5.t te e − = −  See Drukker (2003) for more details about this test. The Durbin-Watson test 

and the white noise test used here are not applicable to panel data; so we do not have the p-

values of these two tests for the state-level data which are in panel format. The test results are 

presented in Table A1 below. 

 

Table A1. p-values of autocorrelation tests for crop stocks and yield shocks  
(null hypothesis: no autocorrelation) 

Variable Durbin-Watson test White noise test Wooldridge type test 
national-level aggregate crop stock 0.3032 0.4208 0.1815 
state-level aggregate crop stock - - 0.0003 
    
national-level corn stock 0.5513 0.9013 0.9136 
state-level corn stock - - 0.1320 
    
national-level corn yield shock 0.8260 0.7574 0.9945 
state-level corn yield shock - - 0.1175 
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Appendix B: First Stage Results 

In this appendix we present the first stage results of the preferred model specifications for corn 

acreage and aggregate acreage models. Specifically, Table A2 includes the first stage results of 

Model (2) in Table 2, the preferred corn acreage model. Table A3 includes the first stage results 

of Model (2) in Table 3, the preferred aggregate acreage model that treats fertilizer price index as 

exogenous. Table A4 includes the first stage results of Model (4) in Table 5, a robustness check 

for the preferred model in which fertilizer price index is treated as endogenous.  

 

Table A2. First stage results for corn acreage model (Model (2) in Table 2) 
 Received corn price Effective ethanol capacity Fertilizer price index 
Lagged corn stocks -0.00220*** 0.00472*** -0.0353*** 
 (0.0000625) (0.000847) (0.00162) 
Railroad length×RFS 0.0000288*** 0.000469*** 0.00249*** 
 (0.00000178) (0.0000768) (0.000144) 
Lagged natural gas price -0.208*** -0.177*** 0.563*** 
 (0.00159) (0.0237) (0.0442) 
Population density -0.00109*** -0.0364*** -0.0859*** 
 (0.000170) (0.00664) (0.0117) 
March Precipitation 0.00176*** -0.00959*** 0.0223*** 
 (0.0000761) (0.000979) (0.00361) 
April Precipitation 0.000397*** 0.00367*** -0.101*** 
 (0.0000755) (0.000780) (0.00364) 
May Precipitation 0.00114*** 0.000211 0.0801*** 
 (0.0000705) (0.000685) (0.00364) 
Linear time trend 0.588*** 0.699*** 32.96*** 
 (0.00544) (0.119) (0.222) 
Quadratic time trend -0.0261*** -0.0342*** -0.865*** 

 (0.000339) (0.00496) (0.00954) 
N 24,924 24,924 24,924 

     Notes: Standard errors are in parentheses. * 10% level, ** 5% level, *** 1% level.  
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Table A3. First stage results for total cropland acreage model (Model (2) in Table 3, 
fertilizer price index treated as exogenous) 
 Received crop price index Effective ethanol capacity 
Lagged national weighted stocks -0.00000118*** 8.01e-08 
 (1.03e-08) (0.000000357) 
Railroad length×RFS 0.00000348*** 0.000504*** 
 (0.000000476) (0.0000188) 
Lagged fertilizer price 0.00401*** 0.00830*** 
 (0.0000369) (0.00129) 
Population density 0.00000297 -0.00518*** 
 (0.00000671) (0.000607) 
Linear time trend 0.00961*** -0.0498* 
 (0.000849) (0.0298) 
N 30,420 30,420 

Notes: Standard errors are in parentheses. * 10% level, ** 5% level, *** 1% level. 
 

 

 

Table A4. First stage results for total cropland acreage model (Model (4) in Table 5, 
fertilizer price index treated as endogenous) 
 Laspeyres price 

index 
Effective ethanol 

capacity 
Fertilizer price 
index 

Lagged national weighted stocks -0.00000171*** -0.000000374 -0.000112*** 
 (1.79e-08) (0.000000539) (0.00000225) 
Railroad length×RFS 0.0000101*** 0.000527*** 0.000945*** 
 (0.000000522) (0.0000185) (0.0000479) 
Lagged natural gas price 0.0399*** 0.0360 8.321*** 
 (0.000952) (0.0286) (0.119) 
Population density -0.0000207*** -0.00529*** -0.00333*** 
 (0.00000677) (0.000607) (0.000455) 
Linear time trend 0.102*** 0.120*** 23.04*** 
 (0.000608) (0.0200) (0.0664) 
N 30,420 30,420 30,420 

   Notes: Standard errors are in parentheses. * 10% level, ** 5% level, *** 1% level. 
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Appendix C: Comparing Predicted Acreage with Observed Acreage 

To examine the validity of our models, we compare predicted corn acreage and aggregated 

cropland acreage in each year with observed corresponding acreage levels. Basically, given that 

we have 12-year data, we re-run our models based on an arbitrary 11-year data and then used the 

regression results to predict the crop acreage in the year that are left out of the estimation. For 

instance, we first leave year 2014 data out and re-run the regressions based on data over 2003-

2013. We then use the regression results to predict corn acreage for each county in year 2014. 

We do so for each year in our sample and obtain the predicted acreage for each county and for 

each year. Figure A1 presents the ratio of the sum of predicted corn acreage across counties to 

the sum of observed corn acreage across counties in each year in the period 2003-2014. The 

same ratio for aggregate crop acreage is included as well. As shown in the figure, these ratios are 

around one for both corn and total acreage, indicating our models predict the observed acreage 

well. Maps in Figures A2 and A3 in this appendix depict the county-level predicted acreage and 

observed acreage in the year 2012 and 2014, respectively. From these maps we can see that the 

predicted and observed acreage values have the same geographical pattern. 
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Figure A1. Ratio of Predicted Acreage over Observed Acreage (2003-2014) 
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Figure A2. County-level Predicted and Observed Acreage in 2012 (in 1,000 acres) 
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          Figure A3. County-level Predicted and Observed Acreage in 2014 (in 1,000 acres)
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