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Abstract 
We construct a tractable multi-market equilibrium model designed to evaluate alternative biofuel 
policies. The model integrates the US agricultural sector with the energy sector and it explicitly 
considers both US ethanol and biodiesel production. The model provides a structural representation 
of the renewable fuel standard (RFS) policies, and it uses the arbitrage conditions defining the core 
value of renewable identification number (RIN) prices to identify the relevant competitive 
equilibrium conditions. The model is parameterized, based on elasticities and technical coefficients 
from the literature, to represent observed 2015 data. The model is simulated to analyze alternative 
scenarios, including: repeal of the RFS; projected 2022 RFS mandates; and, optimal (second best) 
mandates. The results confirm that the current RFS program considerably benefits the agriculture 
sector, but also leads to overall welfare gains for the United States (mostly via beneficial terms of 
trade effects). Implementation of projected 2022 mandates, which would require further expansion 
of biodiesel production, would lead to a considerable welfare loss (relative to 2015 mandate levels). 
Constrained (second-best) optimal mandates would entail more corn-based ethanol and less 
biodiesel than currently mandated. 
 
Key words:  Biodiesel, biofuel policies, carbon tax, ethanol, greenhouse gas emissions, mandates, 
renewable fuel standard, RINs, second best, welfare. 
 
JEL codes: Q2, H2, F1 
 
 

1 GianCarlo Moschini (moschini@iastate.edu) is Professor and Pioneer Chair in Science and 
Technology Policy, Department of Economics and Center for Agricultural and Rural Development, 
Harvey Lapan (hlapan@iastate.edu) is University Professor in the Department of Economics, and 
Hyunseok Kim (hsk@iastate.edu) is a Ph.D. candidate, Department of Economics, all at Iowa State 
University, Ames, IA 50011. This project was supported by a NIFA grant, contract number 
20146702321804.  
 

This paper is forthcoming in the American Journal of Agricultural Economics, volume 99, 2017.  
  

mailto:moschini@iastate.edu
mailto:hlapan@iastate.edu
mailto:hsk@iastate.edu


1 
 

Over the last decade the United States has implemented major policies to promote biofuel use. The 

key provisions, set forth in the Energy Independence and Security Act (EISA) of 2007, are centered 

on the so-called Renewable Fuel Standard (RFS) which mandates certain amounts of renewable fuels 

to be blended into the US transportation fuel supply. These ambitious RFS “mandates” have been 

rationalized as pursuing a variety of objectives, including reduction of GHG emission and reduction 

of the US dependence on foreign energy sources (Moschini, Cui and Lapan 2012). Arguably, 

however, one of their most important impacts has been on agriculture. By sizably expanding 

demand for some agricultural products (e.g., corn to produce ethanol), the RFS is credited with 

having contributed substantially to increased commodity prices (Wright 2014; de Gorter, Drabik and 

Just 2015). These price increases have benefited farmers, and led to large land price increases, but 

biofuel policies’ impact on land use has led to controversies, including the food versus fuel debate 

(Rosegrant and Msangi 2014) and whether biofuels yield actual net environmental benefits 

(Searchinger et al. 2008). In addition, development and production of cellulosic biofuel—one of the 

RFS’s signature features—has severely lagged the mandates schedule set out in EISA. Furthermore, 

the current economic environment of relatively low oil prices, coupled with an unexpectedly strong 

domestic expansion of fossil fuel production, makes the energy security argument somewhat moot. 

The RFS remains controversial, and there is considerable interest in a comprehensive assessment of 

the current and future economic impacts of the RFS (Stock 2015).    

In this article we construct a tractable multi-market competitive equilibrium model suitable 

to evaluate alternative biofuel policies. The model, which integrates the US agricultural sector with 

the energy sector, pays particular attention to a careful structural representation of the RFS biofuel 

support policies, and it is amenable to calibration and simulation to produce theoretically-consistent 

estimates of the market and welfare impacts of these policies. Unlike previous analyses that focused 

exclusively on ethanol (e.g., de Gorter and Just 2009, Cui et al. 2011), we develop a model that 

captures all of the various mandates envisioned by the RFS (Schnepf and Yacobucci 2013). These 

mandates are enforced by the US Environmental Protection Agency (EPA) via Renewable 

Identification Numbers (RINs), which are tradeable. A novel contribution of this article is to show 

how the arbitrage conditions for RIN prices derived from the behavior of distributors that blend 

biofuels with fossil fuels, including the RIN price inequalities implied by the hierarchical structure of 

the RFS mandates, can be embedded in a competitive equilibrium model. 

One of the fault lines of the current RFS implementation is the rising role of biodiesel (Irwin 

and Good 2016). Insofar as biodiesel may be the biofuel of choice to meet the advanced biofuel 
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portion of the RFS mandates, as suggested by recent EPA rulemakings (EPA 2016), an economic 

evaluation of current and prospective US biofuel policies needs to consider the interactions between 

US ethanol and biodiesel production. The model we present captures this essential connection by an 

explicit system representation of the feedstock used in biofuel production. For conventional ethanol 

produced in the United States, corn is the chosen feedstock in virtually all plants. Biodiesel 

production, on the other hand, uses a variety of feedstocks, including animal fats, recycled fats 

(yellow grease) and vegetable oils. The latter are the most important primary input, accounting for 

about 71% of biodiesel feedstock in 2015, with soybean oil being the most widely used (almost three 

fourths of all vegetable oils used in biodiesel production). Given the constraints on the availability of 

other more marginal feedstocks (Brorsen 2015), we assume that further expansions of biodiesel 

production would have to rely on redirecting vegetable oils from other uses. In this article, therefore, 

we develop a structural model of ethanol production from corn and biodiesel production from 

soybean oil.1 The model captures the competition of primary agricultural products for scarce land, 

can trace the impact of biofuel mandates on equilibrium prices at various market levels, and can 

produce a coherent welfare assessment of the overall impact of RFS mandates.  

The topic of this article is of considerable importance from a policy perspective. Biofuel 

policies, and the future of the RFS mandates, while likely to remain controversial, have a crucial 

impact on the agricultural sector (Cui et al. 2011, Pouliot and Babcock 2016). We find that the RFS 

has indeed proved to be a remarkably effective tool for farm support. Relative to the scenario of no 

biofuel policies, the 2015 level of mandates entails a 34% increase in corn price and a 9% increase in 

soybean price. The mandates’ impact on energy prices is smaller in absolute terms, with crude oil 

price decreased by 1.4%. Because the United States is a net importer of crude oil, and a net exporter 

of corn and soybean products, these terms of trade effects contribute significantly to the finding 

that, overall, the welfare impact of the RFS has been positive. The RFS impact on reducing carbon 

emission, on the other hand, turns out to be nil once we account for the leakage effect (due to the 

induced increase in the rest of the world’s fossil fuel consumption). Aggregate welfare at current 

mandate levels is larger than in the “No RFS” scenario by about $2.6 billion. To further improve 

welfare from the 2015 mandate levels, the model suggests that corn ethanol production should be 

increased, whereas biodiesel production should be decreased. The additional welfare gains from such 

constrained optimal mandates, however, are somewhat limited. Finally, implementation of the 2022 

RFS statutory mandate levels—adjusted for a projected realistic expansion of cellulosic biofuels, 

consistent with EPA’s recent waivers—would lead to sizeable welfare losses.  
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The RFS: Current and Prospective Mandates 

The biofuel mandates of the RFS codified by EISA considerably extended the earlier provisions of 

the 2005 Energy Policy Act (Schnepf and Yacobucci, 2013). This legislation laid out a hierarchical 

set of quantitative minimum requirements for different types of biofuels, as well as a schedule for 

these mandates to increase over time, with final mandate levels being reached in 2022. The RFS 

defines an overall “renewable fuel” mandate, to be met with qualifying biofuels that achieve at least a 

20% reduction in greenhouse gas (GHG) emissions (relative to fossil fuel), on a lifecycle basis. 

Furthermore, the RFS specifies a number of nested mandates as subsets of the overall renewable 

fuel mandate. The largest sub-component is that of “advanced biofuels.” Such biofuels must achieve 

at least a 50% GHG emission reduction (relative to the conventional fuel) and encompass a variety 

of biofuels, including sugarcane ethanol and biodiesel (but corn-based ethanol is excluded). A 

portion of the advanced biofuel mandate is explicitly reserved for biomass-based diesel (biodiesel for 

short). The largest portion of the advanced biofuel mandate was supposed to be accounted for by 

cellulosic biofuels, identified as reaching a GHG emission reduction of at least 60% relative to the 

conventional fuel. 

The EPA is responsible for implementing the RFS. To do so, prior to each year the EPA 

determines the fractional requirements that “obligated parties” (e.g., importers and refiners of fossil 

fuels) have to meet. These fractional requirements are calculated so that the mandates volumes of 

biofuel are achieved, given expected demand conditions. The fractional requirements determine the 

individual parties’ renewable volume obligations (RVOs), given their sales of transportation fossil 

fuel. As noted earlier, these RVOs are enforced via the RIN system.2 In addition to setting 

appropriate fractional requirements each year to implement the scheduled RFS mandates, the EPA 

has had to contend with the essential failure of cellulosic biofuel production: technology and 

production capacity are nowhere close to permit the fulfillment of the ambitious mandates 

envisioned by EISA. Hence, in the last several years, the EPA has exercised its waiver authority and 

drastically reduced the statutory RFS mandates accordingly.  

Table 1 reports RFS mandate levels for the years 2015-2017, and for year 2022 (when biofuel 

mandates are supposed to reach their final levels). The columns labeled “EISA” contains the 

statutory mandates, for the overall renewable fuel and its subcomponents: advanced biofuel, 

biodiesel and cellulosic biofuel. It is useful to supplement these statutory mandates, reported in the 

first four rows of table 1, with two additional “implied” mandates. Note that there is no explicit 

mandate for corn-based ethanol. But given that this biofuel is the most cost-effective, at present, the 
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implicit mandate for corn-based ethanol can be obtained as the difference between the renewable 

fuel mandate and the advanced biofuel mandate. This is reported in the last row of table 1, which 

shows that corn-based ethanol is effectively capped by EISA to a maximum of 15 billion gallons 

(from 2015 onward). Also, a portion of the advanced biofuel mandate, not reserved for cellulosic 

biofuels, can be met by a variety of biofuels (including sugarcane ethanol and biodiesel). This 

implied “non-cellulosic advanced” biofuel mandate, computed as the difference between advanced 

biofuel mandates and cellulosic biofuel mandate, is reported in the second-last row of table 1.  

The columns labeled “EPA” reflect the agency’s exercise of its waiver authority. It seems 

clear that the EPA has been systematically and drastically reducing the cellulosic biofuel mandate to 

levels that are feasible given current capacity, and simultaneously scaling back the overall renewable 

fuel mandate. At the same time, EPA rulemaking shows a clear intention to abide by the statutory 

mandates for the other components of the RFS. Also, the EPA is clearly signaling that biodiesel 

provides the avenue for meeting this non-cellulosic advanced biofuel mandate. The 2017 biodiesel 

mandate is almost sufficient to satisfy the other advanced biofuel mandates.3 From these 

observations, we generated a reasonable projection of how the 2022 statutory mandates may be 

adjusted, and this is reported in the last column of table 1. This projection assumes that: (i) the non-

cellulosic portion of the advanced biofuel mandate (5 billion gallons) will be fully implemented; (ii) 

the cellulosic biofuel mandate will continue to be scaled down based on available capacity (our 

projection relies on a linear trend of past EPA rulemakings); and, (iii) the overall renewable fuel 

mandate will be set so that, given (i) and (ii), the implied corn-ethanol mandate is held at the 15 

billion gallons cap. As for biodiesel, our working assumption is that this is the marginal biofuel to 

meet the advanced biofuel mandate, and so the extrapolation as to its level is not required for the 

model that we discuss next (the biodiesel mandate, per se, is not binding).4 The last column of table 1 

constitutes the “2022 scenario” that is analyzed in our counterfactual simulations, along with a few 

other scenarios discussed below.  

The Model 

The model consists of the following parts: US supply for corn and soybeans, consistent with 

equilibrium conditions in the land market; US oil supply; transformation sectors that produce 

ethanol and biodiesel from agricultural crops, and gasoline and diesel from domestic and imported 

crude oil; imports of crude oil and exports of corn and soybeans (including soybean oil and meal); 

rest of the world’s demands for corn and soybean products imports; US demand for food products, 
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transportation fuels and other fuels. The model allows for the endogeneity of crude oil, corn and 

soybean product prices, in addition to representing equilibrium in the US markets for food products 

and transportations fuels. The equilibrium conditions used to close the model are based on a novel 

representation of the arbitrage conditions for RIN prices.  

Domestic Production 

The model represents three domestically produced primary products: corn, soybeans, and crude oil. 

Concerning the two agricultural outputs, we conceive of their production as arising from an 

equilibrium allocation of (finite) cropland across three alternatives: corn, soybean, and all other uses. 

Given the purpose of this analysis, in our model it is important to represent not just the 

responsiveness of the supply of each product of interest to changes in its own price, but also the 

substitutability between corn and soybean, i.e., the cross-price effects. Consistent with recent work 

addressing agricultural supply response to price changes induced by the biofuel expansion (e.g., 

Hendricks et al. 2014, Berry 2011), we postulate both a land allocation response and a yield 

response. Consequently, the supply functions for corn and soybeans are represented as:  

(1) ( , ) ( ) ( , )i i j i i i i jS p p y p L p p= ,   , ,i j c s=  and i j≠   

where p  denotes prices and the subscripts c and s indicate corn and soybeans, respectively. Hence, 

the yield functions ( )i iy p  are presumed to respond to own price only, whereas the acreage 

allocation functions ( , )i i jL p p  depend on both corn and soybean prices (which are endogenously 

determined in the model). Provided the symmetry condition c s s cS p S p∂ ∂ = ∂ ∂  holds, the supply 

functions ( , )c c sS p p  and ( , )s c sS p p  are integrable into an aggregate profit function ( , )c sp pΠ  and 

thus satisfy c cS p= ∂Π ∂  and s sS p= ∂Π ∂ (by Hotelling’s lemma).  

As noted, the acreage functions ( , )i i jL p p  are meant to represent an equilibrium allocation 

of cropland to three alternatives, but we specify them as depending only on the prices of corn and 

soybeans. Two rationalizations can be invoked for this procedure: the price of the outside option 

(other uses) is constant; or, these functions should be interpreted as mutatis mutandi supply 

relationships (i.e., allowing for equilibrium response in the markets for products other than corn and 

soybeans). Computation of the producer surplus, as done in this article, is possible for either 

rationalization, although the interpretation of such measure might differ in subtle ways (Thurman 

1991). In any case, the price of inputs other than land are held constant (across scenarios), except for 
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energy inputs (because the model will solve for different equilibrium fuel prices across scenarios). 

Still, under the ancillary simplifying condition that energy inputs are used in fixed proportion with 

land,5 it follows that the supply functions of interest can in fact be represented simply as depending 

on the prices of the two commodities (corn and soybeans). The supply of the other domestically 

produced primary product, crude oil, is written as ( )R RS p . 

Transformation sectors.  The refining of crude oil yields gasoline gx , diesel dx , and other 

refined petroleum products hx . We assume a Leontief (fixed proportions) production technology: 

(2) { },g g R gx Min x zβ=  

(3) d d g gx xβ β=  

(4) h h g gx xβ β=  

where R R Rx S S≡ +  is the total supply of crude oil to the US market ( RS  denotes US imports of 

crude oil), and gz  represents other inputs used in the refining process. 

 Domestically produced corn has three uses in the model: it can be exported; it can be 

transformed into ethanol; and it can meet domestic demand for all other uses (e.g., animal feed). 

Corn-based ethanol production ex  is represented by the following Leontief production functions: 

(5) { },e e c ex Min x zα=   

where cx  is the quantity of corn, and ez  denotes all other inputs, used in ethanol production. We 

note at this juncture that the model will allow for byproducts—such as distilled dried grains with 

soluble—that can be valuable as animal feed (Hoffman and Baker 2011). The endogenously 

determined animal feed products in our model are corn and soybean meal. To account for the 

feedback effects on these markets of varying ethanol production (across scenarios), the quantities of 

byproducts which substitute for corn and soybean meal used in livestock feed are represented as 

1 cxδ   and 2 cxδ  , respectively.  

Similarly, domestically produced soybeans have two uses: they can be exported as beans; or, 

they can be crushed to produce oil and meal. In turn, some of the meal and oil that is domestically 

produced by the crushing process is exported. Given the constant returns to scale technology in the 

crushing process, and assuming that there are no particular comparative advantages in this process, 

without loss of generality we can simplify the model and assume that each bushel of soybeans that is 
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exported is really a fixed-proportion bundle of soybean oil and meal.6 Hence, we presume that the 

entire domestic production of soybeans is converted into soybean oil vx  and meal mx  by the 

following Leontief technology:  

(6) { },v v s vx Min S zα=    

(7) m m v vx xα α=  

where sS  is domestic soybean supply, and vz  denotes other variable inputs used in the production 

of vegetable (soybean) oil. Next, soybean oil can be exported, it can be converted into biodiesel, or it 

can meet domestic demand for all other uses. Conversion of soybean oil into biodiesel bx  takes 

place according to this Leontief technology: 

(8) { },b b v bx Min x zα=   

where vx  is quantity of soybean oil, and bz  denotes all other variable inputs, used in the production 

of biodiesel.  

Demand 

For the analysis of various scenarios, the model endogenizes both agricultural product prices and 

fuel prices. We explicitly model the demand for transportation fuels (gasoline and diesel), as well as 

the demand for other energy products produced by refining crude oil. Because transportation fuels 

in our model blend fossil and renewable fuels, it is important to account for their energy content. 

Our maintained assumption is that consumers ultimately care about miles traveled (de Gorter and 

Just 2010). Having accounted for their different energy contents, ethanol is considered a perfect 

substitute for gasoline and biodiesel a perfect substitute for diesel. To permit an internally consistent 

welfare evaluation of alternative policy scenarios, domestic demand functions are obtained from a 

quasi-linear utility function for the representative consumer, which is written as:  

(9) ( , ) ( ) ( , , ) ( )gf df h c m vU I p p p p p p E= + Φ + Ψ + Θ − Λ   

where I  denotes monetary income which, along with all prices, is expressed in terms of a numeraire 

good whose price is normalized to one. Subscripts gf and df  here denote gasoline fuel and diesel 

fuels, respectively (i.e., blends of fossil and renewable fuels). Thus, we are postulating additive 

separability between transportation fuels, heating oil, and food/feed products. This property 

assumes that a number of cross-price elasticities are equal to zero. But some critical substitution 

relations (between food/feed products, and between various fuels) are modeled explicitly. Note also 
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that these preferences include the externality cost of transportation fuel consumption via the term 

( )EΛ , where E  denotes total world GHG emissions associated with the consumption vector of all 

energy products (accounting for the fact that biorenewable energy products entail savings on 

emission).  

 The foregoing approach of modeling biofuels and fossil fuels as perfect substitutes, once 

expressed in equivalent energy units, is consistent with other recent studies (e.g., Holland et al. 

2015), but some additional discussion may be warranted vis-à-vis the “blend wall” issue. The latter 

refers to the maximum amount of ethanol that can be sold via the so-called E10 gasoline blend 

(which contains a maximum of 10% ethanol). As noted by Stock (2015, p. 13) “…this is more 

accurately not a ‘wall’ but rather a situation in which additional ethanol must be provided through 

higher blends.” When that is the case, it may be important to represent separately consumers’ 

demand for E10 and E85, the higher-ethanol blend that can be used by flexible fuel vehicles (FFVs) 

(Anderson 2012, Salvo and Huse 2013). As discussed in more detail below, feasibility of the RFS 

mandate is not an issue in the benchmark 2015 year, nor for the 2022 scenario. Feasibility may be an 

issue for the higher ethanol levels of the optimal mandates that we calculate, in which case the 

putative welfare gains of optimal mandates need to be properly qualified. 

 Demand functions for corn, soybean oil and soybean meal are written as ( , , )c c m vD p p p , 

( , , )v c m vD p p p , and ( , , )m c m vD p p p , respectively, and satisfy c cD p= −∂Θ ∂ , v vD p= −∂Θ ∂ and 

m mD p= −∂Θ ∂ . Similarly, domestic demand functions for blended gasoline fuel and blended diesel 

fuel, ( , )gf gf dfD p p  and ( , )df gf dfD p p , satisfy gf gfD p= −∂Φ ∂  and df dfD p= −∂Φ ∂ . Again, in 

principle the specification can handle some substitution possibility between gasoline and diesel. Such 

a possible substitution is however not maintained for non-transportation petroleum products, the 

demand for which is ( )h h hD p p= −∂Ψ ∂ . The actual parameterization of these demand functions 

will assume a quadratic structure for the functions ( )Φ ⋅ , ( )Ψ ⋅  and ( )Θ ⋅ , such that the implied 

demands are linear. Demand functions for agricultural products exported to the rest of the world 

(ROW), written as ( )c cD p , ( )v vD p  and ( )m mD p , are also assumed to be linear. As for the 

externality cost ( )Λ ⋅ , we will assume that the social cost is linear in total carbon emission.  
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Equilibrium   

The equilibrium conditions represent the situation where the United States is a net importer of crude 

oil, a net exporter of corn, and a net exporter of soybean oil and meal (as noted earlier, exports of 

soybeans per se are treated as exports of soybean oil and meal). These trade flows are endogenously 

determined by the equilibrium conditions that solve for the equilibrium prices. To exactly match the 

data of the benchmark 2015 year, all other trade flows (because they are of minor importance) are 

treated as exogenous. Similarly, our equilibrium conditions reflect observed stock changes in the 

benchmark year, although these quantities are treated as exogenous across scenarios.  

It is useful to separate the equilibrium conditions that apply in any one scenario into market 

clearing conditions and arbitrage conditions. The latter arise from the competitive (zero profit) 

conditions that apply to the transformation sectors (oil refining, soybean crushing and ethanol 

production), together with the presumed Leontief production functions. Arbitrage conditions also 

arise because of policy interventions in the biofuel market, as discussed below. Unlike Cui et al. 

(2011), none of our scenarios considers the possibility of using border measures (i.e., tariffs). Hence, 

the arbitrage conditions that link domestic and foreign prices are directly maintained in our model. 

Which market equilibrium conditions apply, however, does depend on which policy tools (e.g., 

mandates, taxes, subsidies) are in place. Here we present the equilibrium conditions for the case with 

binding mandates (the status quo). 

The statutory mandate levels are: M
rfx  for the overall mandate for renewable fuel, M

ax  for the 

advanced biofuel mandate, M
bx  for the biodiesel mandate, and M

cex  for the cellulosic biofuel 

mandate (following the RFS convention, all of these mandates, except M
bx , are measured in ethanol 

units).7 These mandates define a hierarchical structure: cellulosic biofuels and biodiesel can be also 

used to meet the advanced biofuel mandate; and all biofuels can be used to meet the overall 

renewable fuel mandate (Schnepf and Yacobucci 2013). Consistent with the 2015 benchmark year 

used to calibrate the status quo, there are three binding mandates: M
rfx , M

ax  and M
cex . Specifically, the 

binding cellulosic biofuel mandate is met with domestic production, which is exogenous to our 

model. The advanced biofuel mandate is met by imports of sugarcane ethanol, the quantity of which 

is exogenous, and biodiesel, either domestically produced or imported (domestic biodiesel produced 

from feedstock other than vegetable oil, and the imported amount of biodiesel, are treated as 

exogenous). More specifically, the equilibrium conditions that we characterize below pertain to the 
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case where the quantity of biodiesel exceeds that required to meet the biodiesel mandate, i.e., the 

“marginal” fuel to meet the advanced biofuel mandate is biodiesel. Hence, the biodiesel mandate, per 

se, is not binding. Finally, the presumption is that the marginal biofuel for the total renewable 

mandate is corn ethanol (recall that there is no specific corn ethanol mandate per se).  

The market clearing conditions can now be stated as follows: 

(10) ( ) 1, ( , , ) ( ) (1 ) e
c c s c c c m v c c

e

xS p p D p p p D p δ
α

− ∆ = + + −    

(11) ( )[ ] 2, ( , , ) ( ) e
m s c s s m m c m v m m

e

xS p p D p p p D pα δ
α

− ∆ − ∆ = + −    

(12) ( )[ ], ( , , ) ( ) b
v s c s s v v c m v v v

b

xS p p D p p p D pα
α

− ∆ − ∆ = + +   

(13) ( ) ( , )M
g g e e e ce ce se gf gf dfx X x X x M D p pζ µ− + − + + =    

(14) ( ) ( , )d d b b b b df gf dfx X x M N D p pζ− + + + =        

(15) ( )h h h hx X D p− =         

Equation (10) represents equilibrium in the corn market. The term c∆  here represents 

change in year-ending (carryover) stocks. The last term on the right-hand-side (RHS) of equation 

(10) represents the net amount of corn devoted to the production of ethanol, where the coefficient 

1(1 )δ−  accounts for the quantity of byproducts from ethanol production that substitute for corn as 

livestock feed. Equation (11) represents equilibrium in the soybean meal market. In this equation, 

the terms s∆  and m∆  represent variations in stocks for soybeans and soybean meal, respectively, 

whereas the term 2 e exδ α  accounts for the quantity of ethanol production byproducts that 

substitute for soybean meal as animal feed. Equation (12) represents equilibrium in the soybean oil 

market. In this equation, the term v∆  represents change in stocks of soybean oil. The last term on 

the RHS of equation (12) represents the amount of soybean oil that is processed into biodiesel. 

Equation (13) represents equilibrium in the gasoline fuel market, where gX  denotes exports of 

unblended gasoline. Note that ethanol from all origins—domestically produced corn-based ethanol 

ex , net of export eX  and imports of sugarcane ethanol seM , as well as domestically produced 

cellulosic ethanol—is blended with gasoline, with everything expressed in gasoline energy equivalent 

units via the coefficient eζ . Because only a very small portion of the cellulosic biofuel mandate is 
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met with cellulosic ethanol, however, only the latter amount (denoted M
ce cexµ ) is presumed blended 

with transportation fuel.8 Equation (14) represents equilibrium in the diesel fuel market. Here dX  

represents exports of refined diesel, bM  represents imports of biodiesel and bN  represents 

biodiesel domestically produced with feedstock other than vegetable oil. Finally, equation (15) 

represents equilibrium in the market for the composite third product of refining crude oil.  

 The quantity of corn ethanol and biodiesel in these market clearing conditions must be 

consistent with the binding mandates, that is, the following identities will hold at the equilibrium:  

(16) M M
e rf a ex x x X≡ − +  

(17) ( )M M
b a ce se b bx x x M M Nϑ≡ − − − −      

where ϑ  is the coefficient that, as per the RFS regulation, converts biodiesel quantities into ethanol 

units ( 1.5ϑ =  for traditional biodiesel). The quantities of petroleum products in these market 

clearing conditions, on the other hand, must satisfy the postulated production relationships, where 

the total supply of crude oil to the US refining sector depends on the oil price: 

(18) ( ) ( )g g R R R Rx S p S pβ≡ +    

(19) ( ) ( )d d R R R Rx S p S pβ≡ +    

(20) ( ) ( )h h R R R Rx S p S pβ≡ +    

 In equilibrium, prices must also satisfy arbitrage relations that reflect the zero-profit 

conditions implied by competitive equilibrium in constant-returns to scale industries. Specifically: 

(21) v v m m s vp p p wα α+ = +    

(22) ( )2 11e e m c ep p p wα δ δ+ = − +     

(23) b b v bp p wα = +     

(24) g g d d h h R gp p p p wβ β β+ + = +   

Equation (21) represents the zero profit in soybean crushing (the value of all outputs equal the cost 

of all inputs). Similarly, equations (22), (23) and (24) represent the zero profit conditions in ethanol 

production, bio-diesel production and crude oil refining, respectively.   

 Finally, to close the model, the prices of blended fuels gfp  and dfp  need to be linked to the 

prices of endogenous fossil fuel inputs (gasoline and diesel) and the prices of endogenous renewable 

fuels (ethanol and biodiesel). These relationships need to reflect the fact that gasoline and diesel 
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blends are subject to federal and state motor fuel taxes (represented by the per-unit terms gft  and 

dft ), and that biodiesel enjoys a per-unit blending subsidy b . More importantly, these arbitrage 

relationships must reflect the cost that obligated parties (refiners and blenders) face for complying 

with the binding mandates, which are mediated by RIN prices.  

RIN Prices and Arbitrage/Zero Profit Conditions 

Our model is specified in terms of absolute mandate quantities, consistent with the RFS statutory 

requirements laid out in the EISA legislation. As noted earlier, however, the implementation of these 

RFS mandates takes the form of “fractional requirements” (determined annually by the EPA) 

imposed on obligated parties (e.g., importers and refiners). These fractional requirements define how 

much of each renewable fuel must be blended in the fuel supply for each gallon of refined fossil fuel 

that is marketed. Obligated parties can meet their RVOs by purchasing renewable fuel themselves, 

or can show that others have done so by purchasing RINs. In fact, because obligated parties are 

typically not those who produce and/or blend biofuels in the fuel supply, an active market for RINs 

has emerged, and the associated RIN prices data can prove useful for empirical analyses (Knittel, 

Meiselman and Stock 2015, Lade, Lin Lawell and Smith 2016). The purpose of this section is to 

show explicitly that this, somewhat intricate, RFS enforcement mechanism can be fully rationalized 

in the context of a model, such as ours, that is specified in terms of absolute mandates.  

Let rfR , aR , bR  and ceR  denote the RIN prices for generic renewable fuel (e.g., corn-based 

ethanol), advanced biofuel, biodiesel and cellulosic biofuel, respectively. The nested nature of the 

RFS mandates imply that ce a rfR R R≥ ≥ , and also that b a rfR R R≥ ≥ . Our working assumption that 

soybean-oil-based biodiesel is the marginal fuel for the purpose of meeting the advanced biofuel 

mandate implies that the RIN price of advanced biofuels is equal to that of biodiesel, a bR R= . 

Furthermore, the presumption that the marginal biofuel for the total renewable mandate is corn 

ethanol means that rfR  is effectively the RIN price for corn-based ethanol. Next, let the fractional 

requirements that obligated parties are required to meet for total renewable fuel, advanced biofuel 

and cellulosic biofuel be represented, respectively, by rfs , as  and ces . Then, given the foregoing 

assumptions on the marginal fuels, it follows that the implicit RFS requirement for corn-based 

ethanol is ˆe rf as s s= − , and the implicit RFS standard for biodiesel ˆb a ces s s= − .  
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To close the model using the arbitrage conditions from RIN prices, we interpret the latter as 

representing what has been termed as the “core value” of RINs (McPhail, Westcott and Lutman 

2011). In particular, we abstract from the fact that obligated parties can borrow RINs from the next 

year and/or they can save RINs to be used next year (Lade, Lin Lawell and Smith 2016). These core 

RIN prices are derived as follows. Given that consumer demand is represented in energy units, a 

blender can choose to sell one unit of pure ethanol as gasoline fuel and earn e gfpζ , upon incurring 

the motor fuel tax cost gft . Because the RFS envisions obligations only when using fossil fuels, this 

strategy does not require the seller to turn in RINs. Hence, the blender would be free to sell the RIN 

that is “separated” when the unit of ethanol is sold as fuel. The minimum price this agent would 

accept, at given prices, for one generic renewable fuel RIN therefore is: 

(25) rf e gf e gfR p t pζ= + −  

Analogously, a blender selling one unit of biodiesel can earn b dfpζ  upon incurring the motor fuel 

tax cost dft . This strategy would separate ϑ  RINs. The minimum price this agent would accept, at 

given prices, for one biodiesel RIN therefore is: 

(26) b b df b df
b

p t p
R

ζ
ϑ

− + −
=



 

To make the foregoing operational for the purpose of closing the model, next we consider the 

demand side for RINs. The zero profit conditions for an obligated party who sells only fossil-based 

gasoline and/or diesel, and buys all needed RINs, are: 

(27) ˆ ˆgf g gf e rf b b ce cep p t s R s R s R− − = + +  

(28) ˆ ˆdf d df e rf b b ce cep p t s R s R s R− − = + +    

These two conditions can be combined to provide the zero-profit condition that must apply to the 

overall refining/blending industry which, as in Lapan and Moschini (2012), is assumed to be 

competitive and operating under constant returns to scale. To this end, we need to express the RFS 

fractional requirements is  in terms of mandated quantities. Assuming binding mandates M
rfx , M

cex  

and M
ax , and exogenously given trade flows (recall: fossil fuel exports are not subject to the 

fractional RFS requirement), then  

(29) 
( )

M
ce

ce
g d g d

xs
x x X X

=
+ − +
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(30) ˆ
( )

M M
rf a

e
g d g d

x x
s

x x X X
−

=
+ − +

 

(31) ˆ
( )

M M
a ce

b
g d g d

x xs
x x X X

−
=

+ − +
 

Using equations (25)-(31), the zero-profit condition for the integrated refining-blending 

industry can then be written as: 

(32)     
( )

( )( ) ( )( ) ( )( )

( )( )

gf gf g g g df df d d d e gf e gf e e

se M
b b df b df b b b b b df b df ce ce

p t p x X p t p x X p t p x X

Mp t p x M N p t p x R

ζ

ζ ζ
ϑ

− − − + − − − = + − −

+ − + − + + + − + − + 

  

The two terms on the LHS of equation (32) can be interpreted as the industry profit from selling 

fossil gasoline and fossil diesel, respectively. This profit balances the net industry cost of having to 

meet the (binding) mandates. Specifically, the first term on the RHS of (32) represents the net loss 

from selling ( )e ex X−  units of corn-based ethanol; note that the motor fuel tax is levied on the 

volume of ethanol sold, whereas the revenue portion adjusts the price of (blended) gasoline fuel by 

the energy content of ethanol. The second term on the RHS represents the net loss from selling 

( )b b bx M N+ +  units of biodiesel; in addition to the role of the motor fuel tax and energy content, 

similar to the case of corn-based ethanol, this term also accounts for the biodiesel blending subsidy. 

The third term on the RHS represents the cost of marketing the (exogenous amount of) sugarcane 

ethanol seM . Because this ethanol contributes to meeting the advanced biofuel mandate, and 

because the marginal fuel for meeting this mandate is biodiesel, then the implicit compliance costs 

associated with sugarcane ethanol is given by the core value of biodiesel RINs. Finally, the last term 

of the RHS represents the cost of complying with the cellulosic biofuel mandate (both the quantity 

mandate M
cex  and the corresponding RIN price ceR  are exogenous to the model).  

 Because the model endogenously determines two renewable fuel prices—corn ethanol and 

biodiesel—the zero-profit condition for the integrated refining-blending industry in equation (32) is 

not sufficient to close the model (unlike in Cui et al. 2011, for instance). The additional price 

arbitrage condition is derived by combining equations (27) and (28): 

(33) gf g gf df d dfp p t p p t− − = − −  

This equilibrium price relation embeds a critical implication of the RFS: marketing a gallon of fossil 

gasoline entails the same compliance cost as marketing a gallon of fossil diesel (i.e., the RHS terms 
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of (27) and (28) are the same). In conclusion, therefore, the equilibrium conditions are given by 

equations (10)-(24), along with equations (32) and (33). These 17 equations are solved for 17 

endogenous variables: cp , sp , mp , vp , Rp , gfp , dfp , gp , dp , hp , ep , bp , ex , bx , gx , dx  and hx .  

Equilibrium Conditions for Other Scenarios 

Equilibrium conditions for scenarios other than the status quo will need to be appropriately adjusted. 

For example, without binding mandates and with no biodiesel subsidy, the equilibrium conditions 

would not require the arbitrage relations (32) and (33). Instead, the required arbitrage relations (for 

an interior solution) would be  

(34) g gf gfp p t= −  

(35) d df dfp p t= −       

(36) e e gf gfp p tζ= −     

(37) b b df dfp p tζ= −  

The set of equilibrium conditions for this case would then be given by equations (10)-(15), equations 

(18)-(24), and equations (34)-(37). These conditions also characterize the laissez faire scenario, 

provided that 0gf dft t= = . The supplementary appendix online shows how the equilibrium 

conditions for the case of no RFS mandates can be adjusted to maintain the assumption that some 

ethanol is likely to be required, even without RFS mandates, as an oxygenate for gasoline fuel to 

meet desired octane levels (a scenario that we explicitly consider in the policy evaluation section). 

Parameterization 

The parameters of the model are calibrated to represent the most recent available consistent 

benchmark data set (the year 2015), in order to capture current conditions in agricultural and energy 

markets. Specifically, the data for crop variables are based on the 2014/2015 marketing year, 

whereas crude oil and fuel variables (fossil and renewable) are based on calendar year 2015.9 The 

purpose of calibration is to choose parameter values for the functional forms of demand and supply 

so that: (a) the equilibrium conditions using the parameterized functions, along with the observed 

values of exogenous variables, produce the values of endogenous variables actually observed in the 

2015 benchmark year; and, (b) the parameterized functions imply elasticity formulae that, once 

evaluated at the 2015 benchmark data, match assumed elasticity values. The functions that we 
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parameterize are the domestic supply functions for corn and soybean; the domestic demand 

functions for corn, soybean meal and soybean oil; the foreign import demand functions for corn, 

soybean meal and soybean oil; the domestic supply and foreign export supply functions for crude 

oil; the domestic demand functions for gasoline fuel and diesel fuel; and, the domestic demand 

function for other refined petroleum products. All of these functions are postulated to be linear.  

Table 2 reports the assumed elasticity parameters used to calibrate the model, along with a 

brief description of sources/explanations. The remaining coefficients used to calibrate the model are 

reported in tables A1 and A2 in the Appendix.  

Elasticities 

The elasticity values used to calibrate the model, summarized in table 2, are based on the literature, 

whenever possible, or assumed to reflect consensus on their qualitative attributes. A full discussion 

of sources and elasticity derivations is included in the supplementary appendix online. A crucial set 

of parameters, given the objective of the study, concerns the own and cross-price supply elasticities 

for corn and soybeans. Given the postulated structure discussed earlier, such elasticities reflect both 

acreage allocation decisions as well as yield response effects: yL
ii ii iiη η η= +  ( ,i c s= ) and L

ij ijη η=  (

,i c s= , i j≠ ). For acreage elasticities Hendricks, Smith and Sumner (2014) provide a useful 

benchmark. Consistent with previous work, they find an inelastic response for both corn and 

soybeans, and also a relatively large cross-price elasticity. As we show in the supplementary appendix 

online, this means that the implied elasticity of land allocated to these two crops, when both corn 

and soybean prices are scaled together, is almost completely inelastic. As noted by the AJAE editor, 

these elasticities may not be representative of the country as a whole because they are based on data 

from only three states of the central corn belt (where most of the cropland is already allocated to 

these two crops). To proceed, we have estimated an acreage response model based on national data 

for the period 1970-2015 (see the supplementary appendix online for details). The estimates we 

obtain imply a somewhat more elastic acreage response than the long run estimates of Hendricks, 

Smith and Sumner (2014), and these are the values in table 2 used to calibrate the model. As for 

yield elasticities, Berry (2011) provides an extensive review of existing empirical evidence. The broad 

consensus is that virtually all of the crop supply response comes from acreage response, not from 

yield response. Here we use a set of point estimates for yield response to price from Berry and 

Schlenker (2011). 
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The own-price elasticity of domestic corn demand is the same as used by de Gorter and Just 

(2009) and Cui et al. (2011), and similar values are assumed for soybean oil and meal demands. 

Cross-price demand elasticities are calculated based on these own-price elasticities and one 

additional parameter that restrict all of the Allen-Uzawa elasticities of substitution to be the same. 

Import elasticities for the rest of the world (ROW) notionally reflect both ROW demand and supply 

responses. To keep the model tractable, we do not explicitly model such underlying functions, nor 

do we represent cross-price effects. But in the supplementary appendix online we develop the 

structural relations between demand and supply elasticities and the import demand elasticity, and use 

such relations to guide the choice of our baseline import elasticity values. For soybean products, our 

baseline elasticities are broadly consistent with those reported by Piggott and Wohlgenant (2002), 

whereas for corn our ROW import demand is more elastic than that postulated by Cui et al. (2011).  

Another crucial set of elasticities relates to fuel markets. A considerable body of literature, 

succinctly reviewed in Difiglio (2014) and Greene and Liu (2015), has documented that gasoline 

demand is very inelastic. Indeed, Hughes, Knittel and Sperling (2008) find that it has become more 

inelastic in recent years. We conservatively assume the elasticity of gasoline demand estimated by 

Bento et al. (2008), who use a microeconomic model that allows consumers to respond to price 

changes with both car choice and miles traveled. This value is also close to the estimate obtained, 

with a completely different methodology, by Coglianese et al. (2017), and actually more elastic than 

other recent estimates (e.g., Lin and Prince 2013). Consistent with findings in the literature (Dahl 

2012, Winebrake et al. 2015) we postulate that the demand for diesel fuel is more inelastic than that 

for gasoline fuel, while the demand for other refined fuel products is specified as relatively more 

elastic. Similar to demand elasticities, the consensus is that the crude oil supply is very inelastic 

(Difiglio 2014, Greene and Liu 2015). Our baseline parameterization relies on the crude oil supply 

elasticity used by the US EIA National Energy Modeling System (EIA 2014). As for the ROW 

export supply of crude oil to the United States, again this reflects both ROW supply and demand 

responses. Concerning the latter, for the United States our model presumes elasticities of demand 

for refined products, not crude oil. But using the structural (Leontief) production relations between 

refined products and crude oil, and the equilibrium arbitrage relation between prices in (24), the 

supplementary appendix online shows that, for the 2015 calibration year, the implied US crude oil 

demand elasticity is -0.20. If the ROW has a similar demand elasticity, and its crude oil supply 

elasticity is the same as in the United States, as assumed in EIA (2014), then we can obtain the ROW 

export supply elasticity value reported in table 2. 
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Technical Coefficients   

The full set of technical coefficients is reported in table A1 in the Appendix. For ethanol, we assume 

that one bushel of corn yields 2.8 gallons of ethanol, just as in Cui et al. (2011). What we do 

differently in this article is provide a more careful account of the byproducts from ethanol 

production. In particular, we recognize that a variety of such byproducts may be produced, and that 

their use as animal feed substitutes for both corn and soybean meal (Mumm et al., 2014). This is 

important in our context, because the quantities and prices of both corn and soybean meal are 

endogenous in the model. Mumm et al. (2014) conclude that byproducts of ethanol production 

return 30.7% (in weight) of the corn used as feed equivalent, with 71% of these byproducts 

replacing corn in animal feed, and the remaining 29% replacing soybean meal. Our calibrated 

parameters 1δ  and 2δ  maintain these proportions, while adjusting to the units used (bushels for 

corn and short tons for soybean meal). Production of biodiesel is assumed to require 7.65 pounds of 

soybean oil per gallon of biodiesel (EIA), and we ignore the byproducts for this process (which have 

limited value, compared with those arising from ethanol production). The Leontief coefficients for 

the production of soybean oil and meal by crushing soybeans are obtained from the actual 2015 data 

for the soybean complex, which shows that 1,873 million bushels of soybeans produced 45.1 million 

short tons of soybean meal and 21,399 million pounds of soybean oil. 

Finally, to represent blended fuels in coherent energy units, for the purpose of modeling 

demand, the British Thermal Unit (BTU) conversion factors of the various fuels are used (EIA). By 

using the coefficients iζ  thus obtained, we are able to express blended gasoline fuel in gasoline 

energy-equivalent gallon (GEEG) units, as in Cui et al. (2011). By a similar procedure, blended diesel 

fuel is expressed in diesel energy-equivalent gallon (DEEG) units, and other refined petroleum 

products are expressed in kerosene energy-equivalent gallon (KEEG) units. 

GHG Emissions and Social Cost 

Total GHG emission relevant for assessing the alternative biofuel policies scenarios include those 

associated with US consumption of transportation fuel and other refined petroleum products. But, 

because we are dealing with a global externality, it is important to account for the induced change in 

ROW emission induced by the RFS (the so-called leakage effect). Hence, total emission is computed 

as j j R RjE q E D E= +∑ , where jq  denotes the quantity of individual fuel types consumed in the 

United States, jE  denotes the corresponding emission rate, RD  is the ROW crude oil consumption, 
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and RE  is the associated emission rate. These (lifecycle) emission rates, measured as kg/gallon of 

carbon dioxide equivalent (CO2e) and reported in table A2 in the Appendix, are taken from EPA 

(2010) and reflect consensus estimates of GHG emission savings provided by biofuels.10 As for 

GHG emissions rate of other refined petroleum products, the coefficient we computed is based on 

five major products of this category.11  

To translate GHG emission into a social cost, we assume a constant marginal social damage 

of pollution, and thus write ( )E EγΛ = . Regarding γ , the marginal social cost of carbon dioxide 

emissions, the large body of existing work has produced a bewildering array of estimates (Tol 2009), 

a reflection of the conceptual and practical complexities of such an endeavor. In addition to the 

familiar difficulties of choosing the baseline value for this parameter, we also need to address the 

question of what we intend to measure. Our model is predicated on a US-centered welfare criterion. 

For internal consistency, therefore, our model suggests that only the carbon-emission implications 

of US biofuel policies for the US economy are relevant. Hence, we follow Cui et al. (2011), who 

rationalize the use of a benchmark global social cost of $80/ tCO2, based on the Stern Review (Stern 

2007), and then apportion this cost based on the share of US share of the world economy to obtain 

the adopted value of γ = $20/ tCO2.12   

Other Baseline Variables 

Data on prices and quantities used to calibrate the model are reported in the supplementary 

appendix online, which includes sources and calculation methods. Many of these values are also 

reported in the status quo column of table 3 below (given that parameters were correctly calibrated, 

simulation of the status quo reproduces the benchmark variables). For most variables, the data 

pertains to observed representative values for the benchmark (2015) year, but for some variables the 

benchmark values are calculated to be consistent with the model. These include gasoline fuel and 

diesel fuel prices, of course. Also, the reported values for the net export of soybean meal and 

soybean oil are the sum of actual net exports and implied net exports from the export of soybeans 

(as discussed earlier). The price of biodiesel is also calculated. It turns out that a representative 

biodiesel price, such as that reported by the USDA,13 would imply an unreasonably low “core value” 

for the corresponding RIN price, if one assumed that the biodiesel blending subsidy was fully 

expected, as maintained in equation (26). But in fact this subsidy was passed into law only on 

December 18, 2015, although it retroactively applied to the entire 2015 calendar year. The 

considerable uncertainty surrounding the availability of the biodiesel blending subsidy throughout 
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2015, as well as contractual arrangements that many market operators put in place to deal with that 

(Irwin 2015), suggests that it is unwise to use the observed biodiesel price in the context of a model 

that presumes the certainty of such a subsidy. Therefore, we elected to compute the biodiesel price 

that would be implied by the observed 2015 RIN prices.14  

Other variables of interest reported in the status quo column of table 3 also include motor 

fuel taxes and RIN prices. Concerning motor fuel taxes, we note at this juncture that these taxes, in 

virtually all cases, are levied on volume basis (Schroeder, 2015), a feature that we have maintained in 

our structural model. For gasoline, the assumed per-unit tax is the sum of the federal tax 

(¢18.40/gallon) and a weighted average of state taxes (¢26.49/gallon). For diesel, the assumed per-

unit tax is the sum of the federal tax (¢24.40/gallon) and a weighted average of state taxes 

(¢27.24/gallon). The RIN price for ethanol is the 2015 average of D6 RIN prices, whereas for 

biodiesel it is the average of the 2015 annual averages of D4 and D5 RIN prices ($0.7475 and 

$0.707, respectively), all from OPIS data.15 

Market and Welfare Impacts of the RFS: Alternative Scenarios 

The model outlined in the foregoing sections is used to evaluate a number of policy scenarios, 

specifically: 2015 RFS mandate levels (the status quo); implementation of the 2022 RFS mandates, 

with projected adjustments for cellulosic biofuels as discussed in section 2 (table 1); and, repeal of 

biofuel mandate policies (No RFS).16 In addition to evaluating the above scenarios, because we have 

an explicit welfare function, the model permits us to characterize optimal biofuel mandates (a 

second best policy, in this setting), for both biodiesel and corn-based ethanol. Finally, for the 

purpose of benchmarking the welfare implications of these policies, we also evaluate the laissez faire 

scenario (i.e., no biofuel policies and no taxes on transportation fuels).  

For each of these five scenarios the model permits computation of market effects (e.g., 

prices and equilibrium quantities), as well as an assessment of the welfare impacts. Because of its 

structure, the model accounts for potential welfare gains accruing to the United States through the 

impact that alternative biofuel policies can have on the US terms of trade for oil, corn and soybean 

products. Our welfare calculations also identify important distributional effects by breaking down 

welfare changes for individual components. We specifically identify net benefits accruing to US 

consumers, measured as consumer surplus from the integrable system of demand equations derived 

from the indirect utility function in equation (9); net benefits accruing to the domestic agricultural 

sector (with aggregate producer surplus consistently calculated as discussed in the supplementary 
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appendix online); net benefits accruing to domestic producers of crude oil; net government tax 

revenue; and, the monetary value of GHG emission savings. 

Results  

In table 3 and table 4, results pertaining to the various scenarios are reported by column in the 

following order: laissez faire, no RFS, 2015 mandates, projected 2022 mandates, and optimal 

mandates. The top portion of table 3 reports the value of the active policy variables for each 

scenario. Note that, with the exception of the laissez faire, all scenarios envision motor fuel taxes at 

the baseline level. In addition to the relevant mandates, the status quo also includes the $1/gallon 

biodiesel subsidy (technically, a tax credit). This subsidy is omitted from the optimal mandates and 

2022 scenarios (this is without loss of generality, because the biodiesel mandate is binding in those 

scenarios). Next, table 3 reports the equilibrium prices and quantities for all scenarios that are 

considered. Whereas table 3 focuses on the market impact of policies in the various scenarios, table 

4 pertains to the computed welfare impacts, which are reported as changes from the “No RFS” 

scenarios, i.e., the status quo before biofuel policies. The estimated aggregate welfare effects are 

decomposed into several subcomponents to describe the distributional impacts of RFS policies 

(including on domestic agricultural producers, domestic crude oil producers, and consumers). The 

impacts on consumer surplus in transportation fuel demand is decomposed into changes accruing 

via gasoline fuel demand and diesel fuel demand (this decomposition is feasible due to the zero 

substitution possibilities between the two fuel demands).  

One of the welfare components in table 4 is the monetary value of the policies’ impact on 

changes in GHG emissions. These emission changes are also reported separately in physical units 

(tCO2e), and decomposed between those occurring in the United States and in the ROW. The latter 

accounts for the implication of “leakage,” which arises when unilateral efforts to reduce a global 

externality are thwarted by induced emission elsewhere (Hoel 1991). One of the two main avenues 

for carbon leakage to occur is via the impacts of policies on terms of trade (Felder and Rutherford 

1993). Because the model can trace the impact of the RFS on equilibrium crude oil price, we can 

account for the leakage effect that arises because the ROW oil consumption responds to changes in 

crude oil price.17    

Status quo, status quo ante, and laissez faire. Given the calibration strategy described in the 

foregoing, the values of equilibrium variables for the “2015 mandates” column in table 3 are equal to 

the 2015 values that were used in calibration, a verification that the intercepts and coefficients of all 
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demand and supply functions are precisely calibrated. The ethanol blending ratio in the calibration 

data is 9.88%, indicating that the blend wall issue is not a concern in the benchmark year. The “No 

RFS” scenario, as noted, presumes that all mandates and biodiesel subsidies are repealed. 

Comparison of this scenario with the “2015 mandates” case provides some insight as to the overall 

market impacts of the current RFS. The largest impact is on agricultural prices: relative to the status 

quo ante the RFS increases corn price by 34% and the soybean price by 9%. All this notwithstanding 

the fact that the oxygenate requirement for ethanol (which turns out to bind) entails the use of 4.1 

billion gallons of ethanol in the “No RFS” scenario. Because biodiesel biases demand of soybean 

products, the RFS increases soybean oil price by 49% whereas soybean meal price actually declines 

(by 3.6%). Not surprisingly, the RSF impact on crude oil price (and refined products prices) is much 

smaller: the crude oil price is estimated to decline by 1.4%, the gasoline price to decline by 9.5% (the 

prices of diesel and of other refined petroleum products instead increase—reduced amount of 

refined crude oil, along with the Leontief technology, result in a relative scarcity of these refined 

products). The RFS leads to a modest contraction in domestic crude oil production, and a larger 

decline in imports of crude oil (which drop by about 6%). 

The laissez faire scenario, in addition to the repeal of the RFS, also envisions dropping all 

motor fuel taxes. This is not a scenario with realistic policy prospects, of course, but it is of some 

interest to gain insights into the working of the model. Interestingly, the production of corn-based 

ethanol in the laissez faire is considerably higher than in the “No RFS” scenario (the 3% oxygenate 

requirement is not binding in laissez faire). Correspondingly, the corn price is also considerably higher 

in the laissez faire relative to the “No RFS” scenario. The reason for this effect has to do with the 

impact of transportation fuel taxes. Consistent with the institutional setup, we have modeled these 

motor fuel taxes as levied on a volume basis (Schroeder, 2015). And, under the presumption that 

consumers care about miles traveled, fuel demand accounts for the different energy content of 

biofuels. Hence, as noted by Cui et al. (2011), motor fuel taxes are inherently biased against fuels 

(such as biofuels) that have lower energy content than fossil fuels. Conditional on such motor fuel 

taxes being levied per unit of volume of blended fuel, a subsidy for ethanol (and biodiesel) would 

actually be required just to level the playing field (vis-à-vis the objectives of a Pigouvian tax). 

Turning to the welfare impacts reported in table 4, comparing the 2015 mandates case with 

the “No RFS” scenario we find that aggregate welfare is improved by biofuel policies, by $2.6 

billion. In the logic of the model, there are two distinct reasons why RFS policies may improve 

welfare: they can help correct the carbon pollution externality (under the maintained presumption 
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that biofuels are less polluting than fossil fuels); and, because the United States is a large country, 

they may lead to favorable changes in the US terms of trade. It is immediately apparent from table 4 

that no portion of the welfare gain associated with 2015 mandates (relative to the no RFS scenario) 

can be ascribed to a reduction in the carbon externality. The increased use of biofuels does reduce 

carbon emission in the United States (by about 29 million tCO2e), but this effect is more than offset 

by increased ROW emissions caused by the RFS-induced decline in the price of crude oil. Leakage, 

therefore, turns out to imply that US biofuel policies do not contribute to reducing global emissions. 

It is important to stress that the effects we are quantifying here are distinct from the indirect land 

use effects emphasized by other critics of US biofuel policies (e.g., Searchinger et al. 2008). Even 

abstracting from the latter, we find that leakage via terms of trade effects essentially nullifies the 

potential environmental gains arising from using (marginally) more environmentally friendly fuels. 

When comparing the 2015 mandates with the status quo ante, it is apparent that the welfare 

redistribution effects due to the RFS are large (relative to the overall effects). Agriculture is the big 

winner. Because of the sizeable increase in the prices of corn and soybeans, noted earlier, the RFS is 

estimated to increase the sector’s producer surplus by $14.1 billion per year. The large increase in 

land prices that has been observed in recent years (Lence 2014) is certainly consistent with these 

conclusions. Consumers of gasoline fuel also benefit from the decrease in gasoline price, whereas 

users of diesel fuels are actually hurt by the RFS (as are the consumers of other refined petroleum 

products). Overall, therefore, these results suggest that repeal of the RFS would lower domestic 

welfare, both because of terms of trade effects, and because the resulting excess taxation of biofuels 

(relative to fossil fuels) would excessively depress biofuel production. It is also of some interest to 

note that, compared with the no RFS scenario, the laissez faire results in higher welfare. This seems 

counterintuitive, given that the welfare function includes an externality cost, and the laissez faire does 

not have corrective motor fuel taxes. One of the reasons for this outcome is that—given the 

assumed social cost of carbon—motor fuel taxes are set at a higher level than what would be 

required to internalize the carbon emission externality.18 

Year 2022 mandates. The second-to-last column in both table 3 and table 4 considers the 2022 

RFS scenario, the terms of which were discussed earlier and are illustrated in table 1. The major 

differences in mandated volumes from 2015 levels are that the implied biodiesel mandate is 

increased by 84%, whereas the implied corn-ethanol mandate is increased by just 7%. Despite the 

modest increase in corn ethanol production, the ethanol blending ratio (fraction of ethanol in total 
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gasoline fuel) exceeds 10%, a consequence of the decline in gasoline fuel demand associated with 

higher gasoline prices. As noted, ethanol blend ratios in excess of 10% would require some biofuel 

to be sold in higher-ethanol blends such as E85 suitable for FFVs. This raises an issue of feasibility 

of the mandate, and one of interpretation of our results. Because the 10.7% blend ratio of this 

scenario only marginally exceeds the blend wall, it seems quite feasible given current 

infrastructures.19  

Both corn and soybean prices increase substantially, relative to the status quo. The increase in 

soybean price (10.6%) is larger than the increase in corn price (4.6%), relative to the status quo, a 

consequence of the need to expand biodiesel production to meet the advanced biofuel mandate. 

This is also reflected in a much higher biodiesel RIN price (again under the assumption of no 

biodiesel subsidy).  The increased use of both biofuels, combined with an overall decline in gasoline 

fuel consumption, achieves some pollution reduction (unlike the 2015 mandates case). As for 

welfare measures, however, table 4 shows overall welfare is considerably lower with the 2022 

mandates than with 2015 mandates. The increase in crop prices benefits farmers, as the agricultural 

sector’s aggregate producer surplus is highest among the scenarios we have considered. Despite the 

further improvement in the US terms of trade (in addition to increased prices of agricultural exports 

we have a decrease in the price of crude oil imports, relative to 2015 mandates), overall welfare 

declines. This is because these pecuniary effects are offset by the efficiency cost of expanding 

biofuel production (the supply price of biodiesel is increased by $0.83 per gallon, and the supply 

price of ethanol also increases by $0.05 per gallon). In the end, our model shows that biodiesel 

produced from vegetable oil turns out to be a costly way to increase biofuel supply. The projected 

expansion of the cellulosic biofuel mandate also weighs heavily on the welfare impacts of the 2022 

mandates scenario. The large excess cost of these biofuels relative to consumer value—captured by 

the D3 RIN price that we have assumed, based on current market conditions—makes expansion of 

cellulosic biofuel use particularly onerous. 

Optimal mandates. One of the advantages of the structural model that we have developed is 

that we can compute “optimal” mandates. In this second best scenario, we take as given existing 

motor fuel taxes and ask what level of mandates would maximize the welfare function (Marshallian 

surplus net of external damages). The grid search method that we implemented identifies an optimal 

biodiesel mandate of 1.8 billion gallons, zero mandates for cellulosic biofuel, and an overall 

renewable fuel mandate of 18.6 billion gallons (implying an effective corn-based ethanol mandate of 
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approximately 16.8 billion gallons). Thus, the constrained optimal mandates that we find would 

envision an 18% expansion of the implied corn-based ethanol mandate, relative to the year 2022 

scenario, and a drastic reduction of the advanced biofuel mandate (including zero cellulosic biofuel). 

The corn price would increase, relative to both 2015 mandates and the year 2022 scenario, but the 

soybean price would decline.  

The corn price increase results in higher marginal cost of supplying ethanol, and the ethanol 

price also increases. Consequently, the ethanol RIN price also increases. table 3 indicates that the 

biodiesel RIN price also increases with the optimal mandates, relative to 2015 mandates, despite the 

fact that soybean oil price is lower. Note, however, that the optimal mandate scenario presumes the 

elimination of the biodiesel subsidy ($1 per gallon), so that the RIN price in the optimal mandate 

case reflects the full extent of the marginal cost of biodiesel production in excess of its consumer 

valuation (if the $1 subsidy were preserved, the optimal mandates would entail essentially a zero RIN 

price for biodiesel).20 These optimal mandates would result in higher emissions than with the 

projected 2022 mandates. The overall welfare gain associated with such optimal mandates, relative to 

2015 mandates is $0.7 billion, but relative to the projected 2022 scenario the gain amounts to $5.2 

billion.  

The ethanol blending ratio with optimal mandates turns out to be 11.6%. Concerning 

feasibility, as discussed earlier (footnote 19), this blending may be supportable given current 

infrastructures. But, as highlighted by Anderson (2012), E10 and E85 are best viewed as imperfect 

substitutes on an energy-equivalent basis. Even if consumers only cared about the cost per mile of 

fuel, because E85 requires more frequent refilling than E10, and not all gas stations carry E85, there 

is a convenience cost to using E85. We have chosen not to embed this imperfect substitutability 

property in our demand specification.21 As a result, we cannot offer a rigorous welfare assessment of 

optimal mandates when E85 consumption needs to be expanded beyond current patterns. Still, the 

welfare gain that we estimate from optimally rebalancing RFS mandates may be interpreted as the 

upper bound of the potential payoff of whatever investments may be required to accommodate the 

blend wall.22  

Sensitivity Analysis  

Inevitably, some of the assumed elasticity values or coefficients used to parameterize the model may 

be perceived as having a degree of arbitrariness. We note at this juncture that the existing 

econometric evidence can only be of partial help, both because of the limited number of relevant 
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studies, and because the structure underlying existing econometric estimates may not be entirely 

consistent with the structure of this article’s model. In any event, sensitivity analysis can be helpful 

to assess the robustness of the results to alternative parameter values. Here we present the results 

associated with alternative assumptions concerning the ROW elasticity of crude oil supply to the 

United States, and the ROW elasticities of demand for US agricultural exports. A more 

comprehensive set of sensitivity analyses is presented in the supplementary appendix online.  

In the logic of the model, there are two distinct reasons for RFS policies: to correct the 

carbon pollution externality (under the presumption that biofuels are less polluting than fossil fuels); 

and, to exploit the terms of trade. Concerning the first of these objectives, the second best setting of 

the model needs to account for the fact that existing motor fuel taxes also ameliorate the carbon 

externality. Furthermore, as noted, insofar as these taxes are levied on a volume basis, they are 

inherently biased against biofuels (because the latter entail lower pollution effects and have lower 

energy content). This imbalance can, to a degree, be addressed by RFS mandates because these 

policy instruments work as a tax on fossil fuel and a subsidy for biofuel (in a revenue neutral 

fashion, as shown in Lapan and Moschini 2012). And because they tax products (fossil fuels) for 

which the United States is a net importer, and subsidize domestic use of products (corn and soybean 

products) for which the United States is a net exporter, RFS mandates can also improve the U.S. 

terms of trade.   

To isolate the contribution of these various elements to the estimated market and welfare 

effects, table 5 reports counterfactual results for scenarios that postulate the absence of all or part of 

the terms of trade effects. Specifically, the columns labeled as “no TOT effects” presumes that the 

ROW excess supply of crude oil, and the ROW excess demand for agricultural products, are 

infinitely elastic (such that the prices of crude oil, corn, soybean oil and soybean meal are constant at 

the calibrated values). Under these assumptions, we evaluate both 2022 projected mandates and 

optimal mandates. Because by assumption there are no terms-of-trade effects here, we find that 

2022 projected mandates would entail a large welfare loss (relative to the no RFS scenario) of $11.3 

billion, despite the fact that they considerably decrease the carbon externality (because there is no 

leakage in this case). Without terms of trade effects we also find that there is no scope for biofuel 

policies. Note that, even without terms of trade effects, there remains market failure arguments for 

intervention (carbon externality and the overtaxing of biofuels by existing motor fuel taxes). But the 

assumed technological requirement for ethanol use as an oxygenate, which is binding at the optimal 

solution, make such considerations irrelevant.  
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The last four columns of table 5 decompose the importance of terms of trade as arising from 

the crude oil market or from agricultural markets. When there are no crude oil terms of trade, such 

that the price of crude oil is fixed at the baseline level, we find that 2022 mandate levels still entail 

considerable welfare loss relative to the no RFS scenario. Optimal mandates for this case are close to 

those reported in table 3 and lead to a $2.1 billion gain in overall welfare (relative to no RFS). If we 

do allow crude oil price to adjust, and simply postulate that the ROW demands for US agricultural 

exports are perfectly elastic, then the last two columns in table 5 indicate large welfare losses 

associated with 2022 mandates, and minor gains arising from optimal policies (a mere $0.15 billion 

more than in the no RFS scenario).  

The combined evidence of tables 4 and 5 suggests that virtually all of the estimated increase 

in US aggregate welfare is ultimately due to the positive impacts that the RFS has on the US terms of 

trade. Mandates result in increased prices of corn and soybeans, and a decreased price of crude oil. 

Because the United States is a net exporter of corn and soybean products (both before and after the 

RFS), and a net importer of crude oil, these changed terms of trade are beneficial. Furthermore, it 

seems that the terms of trade effects arising from exports of agricultural commodities dominate the 

beneficial effects associated with decreased crude oil price (which are also affected by the leakage 

effect).  

Comparison with Other Studies 

Differing methodologies and empirical approaches makes comparison of our results with those of 

other studies perilous. Concerning market effects of the RFS, though, we note that our estimated 

agricultural price increases due to the RFS are quite similar to those obtained by Carter, Rausser and 

Smith (2016). Using a completely different methodology—a structural vector autoregression 

econometric approach—these authors estimate that the EISA additional 5.5 billion gallons ethanol 

requirement (relative to those envisioned in the 2005 legislation) caused a 31% long-run increase in 

corn prices. This is quite consistent with our higher estimate for the 2015 mandate levels (34% corn 

price increase), but our model traces the effects of a larger mandate level. Our estimated agricultural 

price increases are smaller than those obtained by Cui et al. (2011), reflecting the implications of a 

much more elaborate model as well as somewhat more conservative elasticity assumptions. Our 

model is unique in the existing literature, as noted earlier, as being able to articulate the impact of the 

RFS on soybean prices, not just corn prices. 
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Other studies have emphasized that the blend wall can make the RFS more costly. Similar to 

our study, Meiselman (2016) recognizes the RIN price linkages implied by the hierarchical structure 

of RFS mandates, but he only considers a closed economy scenario and does not envision supply-

side interactions between biodiesel and ethanol production. He finds that increasing the mandate 

around the blend wall would reduce GHG emission, but this would entail a very high (marginal) 

social cost ($800/tCO2e). Although we do not have a comparable scenario for this estimate, we note 

that our projected 2022 mandate levels improve on carbon emission, both relative to 2015 levels and 

to the no RFS scenario, although welfare declines. The latter conclusion, of course, depends on our 

assumed social cost of carbon (γ =$20/tCO2e). To investigate how the welfare result is affected by 

the assumed social cost of carbon, we computed two break-even levels for the γ  parameter. We 

find that a social cost of carbon of $110/tCO2 would make welfare with the 2022 mandates the 

same as in the “No RFS” scenario, but that it would take a social cost of carbon of $192/tCO2 to 

make welfare with the 2022 mandates the same as with 2015 mandates.  

Conclusion 

This article analyzes some of the market and welfare impacts of US biofuel support policies under 

the RFS program. To do so, we have constructed a tractable multi-market model that incorporates 

biodiesel markets as well as ethanol markets, thereby extending previous work that focused solely on 

gasoline-ethanol blends. We show how compliance requirements on obligated parties, which are 

mediated by RIN prices, can be used to identify the relevant zero-profit conditions required to close 

the model. Within this framework, the model is calibrated to match market data for the 2015 

benchmark year. The model can then be solved and simulated to study counterfactual policy 

scenarios, yielding equilibrium prices, quantities and welfare impacts. A first-order impact of the 

RFS is to divert large amounts of corn and soybean oil to biofuel production. This reduces the 

amount of these products available for export, and the RFS-induced biofuels production also 

marginally lowers the US demand for refined fossil fuels. Given that the United States are a net 

importer of crude oil and net exporter of corn and soybean products, the favorable terms-of-trade 

effects that arise because of the RFS are quite important in order to assess the resulting welfare 

impacts. Having endogenized the relevant agricultural and energy markets, the model that we 

construct offers an ideal tool to assess the overall consequences, from the point of view of the 

United States, of current RFS policies and alternative paths that may be considered going forward.  
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The results that we have presented confirm that the current RFS program considerably 

benefits the agriculture sector. Compared with the status quo ante situation (no RFS), we find that 

current biofuel policies increase corn and soybean prices by 34% and 9% , respectively, and also lead 

to a 1.4% decline in crude oil price. The welfare gain to the United States that can be imputed to the 

RFS, in 2015, is estimated at about $2.6 billion. Virtually all of these US welfare gains are due to the 

impact of RFS policies on the terms of trade. Furthermore, the most relevant effects are those 

associated with the RFS impacts on the price of key US agricultural exports (corn and soybean 

products). The RFS net impact on carbon emission is nil in the benchmark year, and minimal with 

the projected 2022 mandate levels. One of the main reasons for this finding is the leakage effects 

that arise because of increased consumption of fossil fuels in the ROW due to the RFS-induced 

decline in crude oil price.  

There is considerable uncertainty, and policy debate, concerning future implementation of 

the RFS. The model that we have developed can be used to assess the market and welfare 

consequences of alternative paths. We find that full implementation of the EISA statutory 2022 

mandate levels (except for the widely expected extensive waiver of cellulosic biofuel mandates) 

would be costly to the United States. This is because biodiesel, as the marginal fuel of choice to meet 

the advanced biofuel mandate, does not appear to be an efficient enough tool. Alternatively, if we 

ask what the optimal mandates levels would be in the context of the model, we find that it would be 

desirable to expand corn-based ethanol production beyond the 15 billion gallon cap envisioned by 

the EISA legislation (concomitantly, optimal mandates suggest that a reduction of biodiesel 

production from current levels is also desirable, and no cellulosic biofuel production). As noted, of 

course, the viability of such an option may need to deal with the blend wall issue. In any event, 

relative to 2015 mandate levels, these optimal (second best) mandates produce limited welfare gains. 

This is because, as documented in the analysis we have presented, it is the impact of the RFS on 

agricultural terms of trade that is most important. For these effects to remain sizeable, the 

magnitude of US exports cannot be curtailed too much.  

In addition to quantifying the overall welfare gains, the model permits a characterization of 

the re-distribution effects implied by various scenarios. The magnitudes of such effects are quite 

large, and the documented impacts—agriculture is the big winner—may help to rationalize some of 

the political economy features of the debate about the future of the RFS. Although our analysis has 

been consistently articulated in terms of US welfare, our finding that the predominant welfare 

impacts are rooted in terms of trade effects suggests that this domestic program has clear “beggar-
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thy-neighbor” implications. Obligations undertaken within the World Trade Organization (WTO) 

restrain the ability of the United States to use border policies to shift to other countries some of the 

costs of its long-standing agricultural support objectives. RFS provisions, while prima facie consistent 

with the national treatment principle of the WTO, are apparently effective at shifting some of their 

costs onto foreign constituencies. The fact that the latter represent mostly consumers of agricultural 

products adds weight to the food-versus-fuel debate. Finally, our finding that the RFS has minimal 

impacts on reducing global carbon emissions suggests that, from an international perspective, the 

scope of biofuel policies to improve global welfare may be extremely limited.  
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Table 1. Statutory Mandates, EPA Final Rulings, and 2022 Scenario (billion gallons) 

 2015  2016  2017  2022 
 EISA EPA  EISA EPA  EISA EPA   EISA Projected  
Renewable fuel 20.5 16.93  22.25 18.11  24.0 19.28  36.0 20.787 
   Advanced biofuel 5.5 2.88  7.25 3.61  9.0 4.28  21.0 5.787 
   Biodiesel ≥ 1.0 1.73  ≥ 1.0 1.90  ≥ 1.0 2.00  ≥ 1.0 … a 
   Cellulosic biofuel 3.0 0.123  4.25 0.230  5.5 0.311  16.0 0.787 b 
   Non-cellulosic  
   advanced biofuel 2.5 2.757 

 
3 3.38 

 
3.5 3.969 

 
5 5 

   Corn ethanol  15 14.05  15 14.5  15 15  15 15 

Source: Schnepf and Yacobucci (2013) and EPA (2016). All quantities are in ethanol-equivalent 
gallons except for biodiesel, which are in physical volume. 

Note: a Biodiesel produced as needed (assumed to be the marginal advanced fuel);  b Linear trend 
projection based on 2014-2017 EPA rulings (R2 = 0.998).  
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Table 2. Elasticities 

Parameter Symbol Value Source/explanation 
Corn acreage own-price supply elasticity L

ccη  0.36 Estimated. d  
Corn acreage cross-price supply elasticity L

csη  −0.18 Estimated. d 
Soybean acreage own-price supply elasticity L

ssη  0.23 Estimated. d 
Corn yield own-price elasticity y

ccη  0.05 Berry and Schlenker (2011) 
Soybean yield own-price elasticity y

ssη  0.01 Berry and Schlenker (2011) 
Domestic demand elasticity of corn ccε  −0.20 de Gorter and Just (2009) 
Domestic demand elasticity of soybean meal mmε  −0.20 Bekkerman et al. (2012) a 
Domestic demand elasticity of soybean oil vvε  −0.20 Bekkerman et al. (2012) a  
Cross-elasticity of domestic corn demand w.r.t. mp  cmε  0.065 Calculated b, d ( mcε = 0.105) 
Cross-elasticity of domestic corn demand w.r.t. vp  cvε  0.014 Calculated b, d ( vcε = 0.105) 
Cross-elasticity of domestic meal demand w.r.t. vp  mvε  0.014 Calculated b, d ( vmε = 0.065) 
ROW import demand elasticity of corn ccε  −2.50 Calculated d 
ROW import demand elasticity of soybean meal mmε  −1.60 Calculated d  
ROW import demand elasticity of soybean oil vvε  −1.30 Calculated d  
Domestic supply elasticity of crude oil Rη  0.25 EIA (2014) 
ROW export supply elasticity of crude oil Rχ  4.40 Assumed d 
Domestic demand elasticity of gasoline fuel ggε  −0.35 Bento et al. (2009)  
Domestic demand elasticity of diesel fuel ddε  −0.15 Assumed c, d 
Domestic demand elasticity of other refined 

petroleum products hhε  −0.50 Assumed c, d 

Note:  a Rounded values. b Calculated assuming that all of the Allen-Uzawa elasticities of substitution 
are the same. c Based on Dahl (2012) and Winebrake et al. (2015). d See the supplementary appendix 
online for more details.
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Table 3. Market Effects of Alternative Policy Scenarios  

 Laissez  
Faire  

No 
RFS 

2015 
Mandates 

2022 
Mandates 

Optimal 
Mandates  

Gasoline motor fuel tax ($/gal.)  0.449 0.449 0.449 0.449 
Diesel motor fuel tax ($/gal.)  0.516 0.516 0.516 0.516 
Biodiesel subsidy ($/gal.)   1.000   
Cellulosic biofuel mandate (billion units)   0.123 0.787  
Advanced biofuel mandate (billion units)   2.880 5.787 1.795 
Renewable biofuel mandate (billion units)   16.930 20.787 18.616 
Corn price ($/bu.) 3.08 2.75 3.68 3.85 3.88 
Soybean price ($/bu.) 9.26 9.23 10.10 11.18 9.66 
Soybean meal price ($/ton) 378.42 382.07 368.49 362.09 368.20 
Soybean oil price (¢/lb.) 22.20 21.17 31.60 42.44 27.81 
Crude oil price ($/bbl) 49.83 49.10 48.40 48.00 48.36 
Gasoline fuel price ($/GEEG) 2.03 2.35 2.22 2.30 2.15 
Diesel fuel price($/DEEG) 1.39 1.98 2.23 2.12 2.46 
Gasoline price ($/gal.) 2.03 1.90 1.72 1.74 1.63 
Diesel price ($/gal.) 1.39 1.47 1.67 1.50 1.87 
Ethanol price ($/gal.) 1.43 1.33 1.61 1.66 1.66 
Biodiesel (supply) price ($/gal.) 2.93 2.85 3.65 4.48 3.36 
Other refined products’ price ($/KEEG) 1.08 1.17 1.26 1.31 1.27 
RIN price for ethanol ($/unit)   0.49 0.49 0.60 
RIN price for biodiesel ($/unit)   0.73 2.02 1.06 
Ethanol quantity (billion gal.) a 7.946 4.123 14.140 15.167 16.909 
Blending ratio of ethanol (%) b 5.457 3.000 9.877 10.692 11.600 
Biodiesel quantity (billion gal.) a 0.686 0.686 1.779 3.275 1.138 
Gasoline fuel quantity (billion GEEGs) 143.265 136.216 139.051 137.349 140.750 
Diesel fuel quantity (billion DEEGs) 49.202 47.334 46.548 46.898 45.846 
Other refined products (billion KEEGs) 82.097 79.236 76.476 74.887 76.314 
Corn production (billion bus.) 13.474 12.959 14.216 14.218 14.643 
Soybean production (billion bus.) 4.002 4.082 3.927 3.984 3.835 
Corn demand (billion bus.) 8.089 8.231 7.851 7.805 7.752 
Corn export (billion bus.) 2.583 2.993 1.833 1.615 1.585 
Soybean meal demand (million tons) 47.113 46.540 48.408 49.052 48.609 
Soybean meal export (million tons) 54.133 53.236 56.572 58.146 56.643 
Soybean oil demand (billion lbs.) 12.801 12.773 12.260 11.467 12.623 
Soybean oil for biodiesel (billion lbs.)   8.363 19.803 3.457 
Soybean oil export (billion lbs.) 31.096 32.046 22.421 12.425 25.918 
Crude oil domestic supply (billion bbl) 3.475 3.462 3.450 3.443 3.449 
Crude oil import (billion bbl) 3.284 3.092 2.907 2.800 2.896 
Crude oil foreign demand (billion bbl) 23.131 23.201 23.268 23.307 23.272 

Note:  a Quantities (from all sources) blended into US fuel supply. b Calculated by using physical units 
(ratio of gallons of ethanol to gallons of gasoline fuel).  
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Table 4. Welfare Effects of Alternative Policies (changes relative “No RFS” scenario) 

 Laissez 
Faire  

2015 
Mandates 

2022 
Mandates 

Optimal 
Mandates 

Social welfare ($ billion) 2.562 2.647 -1.900 3.344 

  Pollution effect a -1.866 -0.106 0.422 -0.336 
  Tax revenue  -86.165 0.516 2.168 2.987 
  P.S. Agriculture  b 9.266 14.112 21.783 13.481 
  P.S. Crude oil supply  b 2.519 -2.422 -3.814 -2.564 
  Efficiency cost of cellulosic biofuel c   -0.221 -1.417  
  C.S. Crop products’ demand  d -2.652 -8.154 -10.496 -9.223 
  C.S. Fuel demand d 73.851 6.008 0.507 6.495 
        Gasoline fuel demand 45.000 17.828 7.080 28.688 
        Diesel fuel demand  28.851 -11.820 -6.573 -22.194 
  C.S. Other refined products d 7.608 -7.086 -11.054 -7.495 

GHG emissions (million tCO2e) a 93.28 5.28 -21.09 16.80 

     Changes in the United States  128.52 -28.73 -74.68 -19.21 
     Changes in the ROW -35.24 34.01 53.60 36.01 

Note: a In the “No RFS” scenario the GHG emission level is 14,684 [2,976 (US) + 11,709 (ROW)] 
million tCO2e, the monetary cost of which is $293.7 billion. b P.S. = producer surplus. c Computed 
based on a D3 RIN price of $1.80. d C.S. = consumer surplus. 
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Table 5. Sensitivity Analysis: Terms-of-Trade (TOT) Effects  

 Baseline No TOT effects No crude oil TOT No agricultural TOT 

Policies / Market Effects 2015 
Mandates 

2022 
Mandates 

Optimal 
Mandates  

2022 
Mandates 

Optimal 
Mandates  

2022 
Mandates 

Optimal 
Mandates  

Gasoline motor fuel tax ($/gal.) 0.449 0.449 0.449 0.449 0.449 0.449 0.449 
Diesel motor fuel tax ($/gal.) 0.516 0.516 0.516 0.516 0.516 0.516 0.516 
Biodiesel subsidy ($/gal.) 1.000       
Cellulosic biofuel mandate (billion units) 0.123 0.787  0.787  0.787  
Advanced biofuel mandate (billion units) 2.880 5.787 1.117 5.787 1.454 5.787 1.117 
Renewable biofuel mandate (billion units) 16.930 20.787 5.159 20.787 16.723 20.787 9.662 
Corn price ($/bu.) 3.68 3.68 3.68 3.85 3.73 3.68 3.68 
Soybean price ($/bu.) 10.10 10.10 10.10 11.18 9.48 10.10 10.10 
Soybean meal price ($/ton) 368.49 368.49 368.49 362.09 370.52 368.49 368.49 
Soybean oil price (¢/lb.) 31.60 31.60 31.60 42.44 25.78 31.60 31.60 
Crude oil price ($/bbl) 48.40 48.40 48.40 48.40 48.40 48.03 48.88 
Gasoline price ($/gal.) 1.72 1.76 1.88 1.75 1.65 1.75 1.79 
Diesel price ($/gal.) 1.67 1.50 1.44 1.52 1.84 1.48 1.65 
Ethanol price ($/gal.) 1.61 1.61 1.61 1.66 1.62 1.61 1.61 
Biodiesel (supply) price ($/gal.) 3.65 3.65 3.65 4.48 3.20 3.65 3.65 
RIN price for ethanol ($/unit) 0.49 0.44 0.41 0.49 0.55 0.44 0.46 
RIN price for biodiesel ($/unit) 0.73 1.47  2.00 0.98 1.48  
Ethanol quantity (billion gal.)  14.140 15.167 4.129 15.167 15.357 15.167 8.633 
Blending ratio of ethanol (%) 9.877 10.685 3.000 10.703 10.589 10.675 6.140 
Biodiesel quantity (billion gal.) 1.779 3.275 0.686 3.275 0.911 3.275 0.686 
Corn export (billion bu.) 1.833 1.568 4.628 1.615 1.769 1.568 3.370 
Soybean meal export (million tons) 56.572 57.421 47.636 58.146 56.074 57.421 51.657 
Soybean oil export (billion lbs.) 22.421 10.982 30.785 12.425 27.788 10.982 30.785 
Crude oil domestic supply (billion bbl) 3.450 3.450 3.450 3.450 3.450 3.443 3.458 
Crude oil import (billion bbl) 2.907 2.797 3.114 2.786 2.933 2.810 3.033 
Welfare Impacts  (relative to “No RFS”)        
Social welfare ($ billion)  -11.268 0.0 -3.725 2.143 -9.522 0.146 

  Pollution effect   1.549 0.0 1.696 0.361 0.330 -0.191 
  Tax revenue   2.088 0.0 1.880 2.527 2.364 1.163 
  P.S. Agriculture   -1.243 0.0 21.307 10.686 -0.797 -1.412 
  P.S. Crude oil supply   0.0 0.0 0.0 0.0 -3.646 -0.741 
  Efficiency cost of cellulosic biofuel   -1.417 0.0 -1.417 0.0 -1.417 0.0 
  C.S. Crop products’ demand   0.0 0.0 -10.490 -7.921 0.0 0.0 
  C.S. Fuel demand   -0.985 0.0 -4.933 3.120 4.219 3.518 
  C.S. Other refined products   -11.260 0.0 -11.768 -6.629 -10.576 -2.192 

GHG emissions (million tCO2e)  -77.45 0.0 -84.81 -18.04 -16.52 9.55 
     Changes in the United States  -77.45 0.0 -84.81 -18.04 -67.76 -0.85 
     Changes in the ROW  0.0 0.0 0.0 0.0 51.24 10.40 
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Appendix 

Table A1. Technical Coefficients  

Parameter Symbol Value Source/explanation 
Ethanol production coefficient (gal./bu.) eα  2.8 Cui et al. (2011)  
Ethanol by-product replacing corn in feed, as 

fraction of corn used for ethanol  1δ  0.218 1δ = 0.307×0.71 

Ethanol by-product replacing soy meal in feed, 
as fraction of corn used for ethanol  2δ  0.003 2δ = (0.307×0.29)(56/2000)  

Biodiesel production coefficient (gal./lb.) bα  0.131 EIA a 
Soybean meal production coefficient (tons/bu.) mα  0.024 mα =45.1/1,873 b  
Soybean oil production coefficient (lbs./bu.) vα  11.425 vα = 21,399/1,873 b  
Gasoline heat content (mil. BTUs/bbl) 1ζ  5.06 EIA   
Diesel heat content (mil. BTUs/bbl) 2ζ  5.77 EIA  
Ethanol heat content (mil. BTUs/bbl) 3ζ  3.558 EIA 
Biodiesel heat content (mil. BTUs/bbl) 4ζ  5.359 EIA 
Ethanol energy equivalent coefficient 

(GEEGs/gal.) eζ  0.703 3 1/eζ ζ ζ=  

Biodiesel energy equivalent coefficient 
(DEEGs/gal.) bζ  0.929 4 2/bζ ζ ζ=  

Gasoline production coefficient (gal./bbl) gβ  21.286 g g Rx xβ =  

Diesel production coefficient (gal./bbl) dβ  9.115 d d Rx xβ =  
Other refined petroleum products production 

coefficient (KEEGs/bbl) hβ  13.96 42 1.063( ) 0.98g dh β ββ × − ×−=  c  

“Equivalence value” of RIN generation for 
biodiesel ϑ  1.5 Schnepf & Yacobucci (2013) 

Fraction of cellulosic ethanol in cellulosic biofuel    ceµ  0.02, 0.10 Assumed d  

Required fraction of ethanol as oxygenate oxyµ  0.03 Assumed 

Note: a Corresponds to 7.65 pounds of soybean oil per gallon of biodiesel.  
b Data taken from https://www.ers.usda.gov/data-products/oil-crops-yearbook/  
c The coefficient 1.063 accounts for 6.3% average “refinery yield” gains accrued in 2015, whereas  

0.98 is the weighted average of kerosene energy equivalence for petroleum products in this category. 
d The benchmark value of 0.02ceµ =  is estimated from EPA’s “RIN generation summary” over 
2014-2016. For the 2022 (and optimal mandates) scenarios we set 0.10ceµ = , consistent with data 
and discussion contained in EPA (2016). 

https://www.ers.usda.gov/data-products/oil-crops-yearbook/
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Table A2. GHG Emission Rates (kg CO2e/gallon) and Social Marginal Damage 

Parameter Symbol Value Source/explanation 
  Gasoline gE  11.831 EPA (2010)  
  Diesel  dE  13.327 EPA (2010)  
  Corn-based ethanol  

eE  6.572 gE × 0.79 eζ×  (EPA 2010) a 
  Sugarcane ethanol  

seE  3.245 gE × 0.39 eζ×  (EPA 2010) a 
  Cellulosic biofuel  

ceE  3.328 gE × 0.40 eζ×
a 

  Biodiesel  bE  5.332 dE ×0.43 bζ×  (EPA 2010) a 
  Other refined petroleum products  hE  9.410 EIA b 
  Crude oil (kg CO2e/bbl)  504.67 Computed from gE , dE  and hE   
    
  Marginal emissions damage ($/tCO2) γ  20.0 Stern (2007) and Cui et al. (2011) 

Note: a Life-cycle GHG emissions rates per energy unit relative to gasoline and diesel baselines (EPA 
2010, Chapter 2.6). b Weighted average of CO2 emissions rates from various other refined products 
(see text).  
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Footnotes 

1 To keep the analysis tractable we avoid the structural representation of other vegetable oil 

industries. Insofar as soybean oil is a close substitute for other vegetable oils that can also serve as 

feedstock for biodiesel production, this simplification would seem to entail little loss of generality. 
2 RINs are identifiers assigned to biofuel batches at production. They are “separated” from the 

physical product when the biofuel is blended with fossil transportation fuel. Such separated RINs 

can then be used by obligated parties to show compliance. Obligated parties can meet the RIN 

requirements by buying a sufficient amount of biofuel themselves or, alternatively, by buying 

separated RINs from other parties (McPhail, Westcott and Lutman, 2011). 
3 Although the biodiesel mandate is defined in physical volume, when biodiesel is used to meet the 

advanced biofuel standard, or the overall renewable fuel standard, each gallon is multiplied by an 

“equivalence value” (either 1.5 or 1.7) (Schnepf and Yacobucci 2013).  
4 Lade, Lin Lawell and Smith (2016) also find that biodiesel served as the marginal biofuel for RFS 

compliance in 2013. Irwin and Good (2016) derive mandate projections to 2022 very similar to ours.  
5 The supplementary appendix online provides an explicit justification for this assumption based on 

Beckman, Borchers and Jones (2013). Note that, whereas this simplifies the representation of the 

relevant equilibrium conditions, we still can account for the impact of changing equilibrium energy 

prices (across scenarios) in the computation of agricultural producer surplus.  
6 Sobolevsky, Moschini and Lapan (2005) explain why, given the maintained assumptions, the 

location of soybean processing is undetermined such that the only meaningful trade flows that can 

be recovered by competitive equilibrium pertain to the factor content of trade. 
7 In the RFS regulation, these fuels are denoted as D6, D5, D4 and D3, respectively. 
8 Most of the current production of cellulosic biofuel takes the form of compressed natural gas and 

liquefied natural gas derived from biogas (EPA 2016). Note, however, that the full mandate M
cex  is 

relevant for the purpose of refiners/blenders’ cost of compliance with the RFS, as discussed below. 
9 The marketing year runs September to August for corn and soybeans, and October to September 

for soybean meal and soybean oil. 
10 The relative lifecycle GHG emissions rates for corn-ethanol, sugarcane ethanol, and biodiesel—

when fuels are measured in energy equivalent units—are 79%, 39% and 43%, respectively, 

compared to corresponding fossil fuel baselines. For cellulosic biofuel, the EPA requires that 
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qualifying products provide at least a 60% emission savings relative to fossil fuels, so we 

conservatively assumed this limit value in calculating the carbon emission coefficient in table A2. 
11 These products—aviation gasoline, kerosene-type jet fuel, propane, kerosene and residual fuel 

oil—account for 52%, by weight, of all other refined petroleum products. Owing to the assumed 

Leontief technology, the assumed emission rates for refined products can alternatively be expressed 

per units of crude oil consumption, and this rate is used to compute GHG changes in the ROW. 
12 The US government’s estimate for the 2015 social cost of carbon (in 2007 dollars) ranges from 

$11/ton of CO2 (when using a 5% discount rate) to $56/ton of CO2 (when using a 2.5% discount 

rate), with an additional estimate of $105/ton of CO2 to represent higher-than-expected impacts of 

temperature changes (US Government 2016, p. 4). 
13 The average annual biodiesel price for 2015 that we computed from USDA data $2.83/gallon. 

(National Weekly Ag Energy Round-Up, USDA Ag Marketing Service).  
14 Computation of this price requires simultaneously solving equations (26), (32) and (33), which also 

yields the blended fuel prices gfp  and dfp  at the calibration point. 

15 The core value for cellulosic biofuel RINs, used to impute the social cost of (exogenous) cellulosic 

biofuel mandates, is estimated at $1.80 per unit (from the average of D6 RIN prices, over the 

relevant period, as reported in “PFL Weekly RIN Recap”). 
16 For this scenario, however, we assume that even without biofuel policies a certain amount of 

ethanol is used by blenders as a gasoline oxygenate. This is modeled as a technological minimum 

requirement, which is set at 3% of the blended gasoline fuel. The supplementary appendix online 

provides the equilibrium conditions for the case when this requirement is binding.  
17 The elasticity of the ROW crude oil demand used to estimate the leakage effect is 0.2Rε = − . As 

detailed in the supplementary appendix online, this is the demand elasticity that is implied by the 

model’s assumed elasticities for refined petroleum products’ demands. This value was also used to 

rationalize the ROW crude oil export supply elasticity used in the model.  
18 Given the assumed emission rates and social cost of carbon, the per-gallon Pigouvian taxes needed 

to correct the externality would be $0.237 for gasoline, $0.267 for diesel, $0.131 for corn-based 

ethanol, and $0.106 for biodiesel. Of course, motor fuel taxes can be rationalized in the pursuit of 

more than just reduction in carbon emissions, such as reducing congestion and other externalities 

associated with vehicle use (Parry and Small 2005). 

http://www.ams.usda.gov/mnreports/lswagenergy.pdf
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19 In a recent intercept survey carried out in five US states, Liao, Pouliot and Babcock (2016) find 

that about 50% of FFV motorists use E85. At present, FFVs constitute approximately 8.3% of the 

US fleet of gasoline-powered cars and light trucks (EIA 2016). Because E85 on average contains 

74% ethanol, if half of FFV miles were to be fueled by this blend, the ethanol “saturation point” 

would be about 12.2%. Liao, Pouliot and Babcock (2016) also find that E85 is sold at a premium 

relative to E10 (on an energy equivalent basis), so that a higher saturation point could actually be 

supported if E85 were to be priced more aggressively. 
20 Similar considerations also pertain to the reported RIN prices for the year 2022 scenario. 
21 As consumers are likely heterogeneous with respect to the convenience cost of refueling, an 

accurate aggregate demand representation of this imperfect substitutability would require 

considerable information on the distribution of the relevant consumer heterogeneity, making 

calibration nontrivial. The alternative of representing imperfect substitutability between E10 and 

E85 by means of CES demand functions, as done by Meiselman (2016), does not appear attractive 

in this context.  
22 A more accurate assessment would consider mandate levels that are optimal given the blend wall, 

with an explicit representation of the imperfect substitutability between E10 and E85. Alternatively, 

in the context of our model, we can compute the optimal mandates conditional on a maximum 

ethanol blend ratio of 10%. Such optimal mandates produce a welfare change of $3.18 billion 

(relative to no biofuel policies). Hence, whatever investment that may be required to permit the 

larger blend ratio of the optimal mandates in table 4 would increase welfare by a mere $0.17 billion.  
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