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February 18, 2021 
 
Attention: Docket ID No. EPA–HQ–OAR–2020–0322 
 
U.S. Environmental Protection Agency 
1200 Pennsylvania Avenue, NW 
Washington, DC 20460 
 
Re: Comments on Notice of Receipt of Petitions for a Waiver of the 2019 and 2020 
Renewable Fuel Standards (86 Fed. Reg. 5182; January 19, 2021) 
 
Dear Docket Clerk: 
 

The Renewable Fuels Association (RFA) appreciates the opportunity to submit 
these comments in response to the U.S. Environmental Protection Agency’s (EPA) Notice 
of Receipt of Petitions for a Waiver of the 2019 and 2020 Renewable Fuel Standards (86 
Fed. Reg. 5182; January 19, 2021).  The waiver requests submitted to the EPA included 
three separate letters from state governors and a letter from an attorney representing a 
group of small refineries, the members of which were not publicly disclosed. 

 
RFA is the leading trade association for America’s ethanol industry. Its mission is 

to drive expanded demand for American-made renewable fuels and bioproducts 
worldwide.  Founded in 1981, RFA serves as the premier forum for industry leaders and 
supporters to discuss ethanol policy, regulation, and technical issues. RFA’s 300-plus 
members are working to help America become cleaner, safer, more energy secure, and 
economically vibrant. 

 
Section 211(o)(7)(A) of the Clean Air Act (CAA) states that the EPA Administrator 

may waive “the national quantity of renewable fuel required” under the Renewable Fuel 
Standard (RFS) “(i) based on a determination by the Administrator, after public notice and 
opportunity for comment, that implementation of the requirement would severely harm the 
economy or environment of a State, a region, or the United States; or (ii) based on a 
determination by the Administrator, after public notice and opportunity for comment, that 
there is an inadequate domestic supply.”  The waiver requests fail to demonstrate harm 
as required by the statute and as interpreted by the EPA in its prior denials of waiver 
petitions in 20081 and 2012,2 in that: 

 
• The harm experienced by refineries in 2020 was caused by the COVID-19 

pandemic, not the RFS.  The governors sought the waivers principally as a way 
to provide relief from the pandemic’s impact on transportation fuel 

 
1 73 FR 47168 
2 77 FR 70752 



consumption, and this was also a primary justification in the small refiners’ 
letter.  However, the EPA has previously stated that for a waiver to be 
approved, it must be determined the RFS caused severe economic harm; 
contribution to such harm would not be sufficient, if it occurred.  Additionally, 
since the annual RFS obligations are expressed as percentages, the actual 
2020 volume requirements automatically readjusted in response to the 
downturn in transportation fuel consumption. It is also important to recognize 
that all segments of the energy sector, including the ethanol industry, 
experienced economic hardship as a result of COVID-19. 
 

• A waiver would have no impact on renewable fuel volumes or transportation 
fuel prices during the compliance years for which it was requested, since they 
are in the past.  The governors’ letters asked for a waiver for 2020, and the 
letter from the small refiners’ attorney requested a waiver for 2019 as well.  The 
EPA previously rejected petitions on the basis that severe economic harm 
would not occur if a waiver would not “repair” the alleged harm, or if the waiver 
would have only negligible effects on renewable fuel volumes or transportation 
fuel prices. 
 

• A substantial inventory of renewable identification numbers (RINs) was carried 
over into 2019 and 2020 that would be available to small refineries and other 
obligated parties to use for compliance.  Additionally, prices of the category of 
RINs associated with ethanol (so-called D6 RINs) were at historical lows in 
2019 and were below average in 2020. 
 

• Academic research and the EPA’s own statements establish that refiners pass 
along the cost of RINs via the price they charge for fuels in the wholesale 
market.  As a result, there could be no economic harm to refineries from the 
increase in RIN prices that occurred in late 2020. 
 

• The refineries are asking the EPA to use a waiver to circumvent a court ruling, 
and their request that a general waiver be tailored specifically to small refineries 
is inconsistent with the statutory requirement that a waiver be nationwide in 
scope.  Their request is a thinly veiled attempt to circumvent a January 2020 
decision by the U.S. Court of Appeals for the Tenth Circuit, which ruled that 
under the previous administration the EPA had improperly granted small 
refinery exemptions from the RFS.  Additionally, their request is plainly 
inconsistent with CAA section 211(o)(7)(A), which as noted above states that 
any waiver is to be implemented “by reducing the national quantity of renewable 
fuel required.” (Emphasis added). 
 

• EPA requires petitioners seeking a general waiver to demonstrate that the RFS 
caused severe harm to the economy of a State, region, or the United States. 
Even if the petitioners were able to establish that the RFS itself was the cause 
of severe harm, the statute requires that they must show the harm was 
experienced by a State, region, or the United States – not by individual refiners 
or a group of refiners.  



 
• The petitioners did not provide any economic analysis substantiating the need 

for a waiver, as explicitly required by the EPA’s 2008 guidance on future 
requests for waivers. 

 
Further substantiation of each of these points is provided below.  Additionally, a 

letter that the EPA received from the National Wildlife Federation (NWF) is addressed, 
even though the organization does not qualify as a party that can submit a waiver petition. 

 
Any harm experienced by refineries was caused by the COVID-19 pandemic, not 
the RFS.  RFS obligations automatically adjust downward if there is a decline in 
fuel consumption such as was experienced in 2020. 

 
Letters requesting a waiver from the 2020 renewable volume obligations (RVOs) 

were submitted to the EPA by Governor Edwards of Louisiana3 on April 7, by the 
governors of four oil states on April 15,4 by and Governor Wolf of Pennsylvania on May 
11.5  Most of the content of the letters was identical, with all three stating that a waiver 
was necessary because “the macroeconomic impacts of COVID-19 have resulted in 
suppressed international demand for refined products, like motor fuels and diesel.”  The 
letter sent on behalf of small refineries requested a waiver from their individual RVOs for 
2019 and 2020.6 

 
The pandemic did take a toll on transportation fuel consumption in 2020.  The 

February 2021 Short-Term Energy Outlook by the U.S. Energy Information Administration 
(EIA) estimated that motor gasoline consumption declined to 8.04 million barrels per day 
(mmbd) in 2020 from 9.31 mmbd in 2019.  It was also a very difficult year for ethanol 
producers, as U.S. ethanol consumption fell to 0.82 mmbd in 2020 from 0.95 mmbd in 
2019.  Both gasoline and ethanol consumption decreased by 13%. 

 
The cause of the difficulties experienced by refiners in 2020 is apparent from the 

governors’ requests.  Following introductory paragraphs, the letters dated April 7 and 15 
stated, “Let us be clear: on Friday, March 13, 2020, President Trump declared a national 
emergency related to control of the novel coronavirus known as COVID-19.”  Governor 
Wolf makes similarly notes that “our industry continues to be impacted by the novel 
coronavirus known as COVID-19.”  The small refiners’ letter began by listing a triad of 
causes for their difficulties: “[t]he Tenth Circuit’s recent ruling in Renewable Fuels 
Association v. EPA, effectively eliminating small refinery hardship relief, coupled with the 
COVID-19 pandemic and the precipitous drop in crude oil prices due to the Russia-Saudi 
Arabia disagreement.” 

 
The EPA characterized the letters in its Notice of Receipt of Petitions by observing, 

“They argue that reduced gasoline and diesel demand due to the coronavirus pandemic 

 
3 Letter from Louisiana Governor John Bel Edwards to EPA Administrator Andrew Wheeler (April 7, 2020).  
4 Letter from Texas Governor Greg Abbott, Utah Governor Gary Herbert, Oklahoma Governor Kevin Stitt, 
and Wyoming Governor Mark Gordon to EPA Administrator Andrew Wheeler (April 15, 2020) 
5 Letter from Pennsylvania Governor Tom Wolf to EPA Administrator Andrew Wheeler (May 11, 2020) 
6 Letter from LeAnn Johnson Koch to EPA Administrator Andrew Wheeler (March 30, 2020) 



has harmed refiners, and that the 2020 RFS volume requirements are and will continue 
to inflict further harm on these parties.”7 

 
Given that the pandemic was the cause of the refineries’ difficulties, 

implementation of the RFS cannot have led to severe economic harm.  The EPA has 
been consistent that a determination of such harm can only be made if the RFS is the 
cause; even if the petitioners demonstrated the RFS was a contributor to economic harm 
(which they have not done), that would not be sufficient justification for a waiver.  In its 
2012 Notice of Decision Regarding Requests for a Waiver of the Renewable Fuel 
Standard, EPA wrote, “The statute authorizes a waiver where ‘implementation of the 
requirement would severely harm the economy.’ In the 2008 waiver determination, EPA 
concluded the straightforward meaning of this provision is that implementation of the RFS 
program itself must be the cause of the severe harm. We found that the language 
provided by Congress does not support the interpretation that EPA would be authorized 
to grant a waiver if it found that implementation of the program would significantly 
contribute to severe harm.”8 

 
Moreover, the mechanism by which the annual RFS requirements are 

implemented makes a waiver unnecessary.  In his letter, Governor Edwards proposed a 
specific remedy for the impact of the pandemic: “Such a waiver should lower the total 
RVO by an amount commensurate with the current projected shortfall in national gasoline 
and diesel consumption.”  This is already the case, since the annual RVOs under the RFS 
are expressed as percentages that specify what share of an obligated party’s gasoline 
and diesel production must be comprised by renewable fuels.  Because of this, the 
absolute volume of renewable fuel required to be used decreased proportionally with 
transportation fuel consumption in 2020.  For example, assuming combined gasoline and 
diesel consumption decreased by 12% (compared to projected volume from EIA’s 
October 2019 Short Term Energy Outlook that was used by EPA to calculate the 2020 
standards), the actual renewable fuel volume requirements also would have been 
reduced by 12%.  In this way, the annual RVOs already have a built-in mechanism for 
accommodating fluctuations in gasoline and diesel consumption—even large ones. 

 
A waiver would have no impact on renewable fuel volumes or transportation fuel 
prices during the compliance years for which it was requested, since they are in 
the past. 

 
As noted above, the governors requested a waiver for compliance year 2020, while 

the letter sent on behalf of small refineries also included 2019.  Both years are in the past, 
so even if the EPA were to grant a waiver, biofuel usage and transportation fuel prices in 
those years would not change.  Given this, for practical purposes severe economic harm 
cannot be demonstrated, since EPA in 2008 and 2012 rejected petitions after analysis 
showed that waivers would have negligible effects on these metrics.  In its 2008 Notice 
of Decision Regarding the State of Texas Request for a Waiver of a Portion of the 
Renewable Fuel Standard, the Agency concluded, “EPA believes that waiving the RFS 
mandate would not significantly affect the use of ethanol during the time period at issue, 

 
7 86 FR 5183 (emphasis added) 
8 77 FR 70773 (EPA’s emphasis) 



and the most likely result is that implementation would have no effect.  Therefore it is 
unlikely that implementation of the mandate would cause harm to the economy.”9 

 
Additionally, in the same decision, the Agency noted that granting a waiver under 

such circumstances would be contrary to the goals of the RFS, stating, “EPA believes 
that generally requiring a high degree of confidence that implementation of the RFS would 
severely harm an economy would appropriately implement Congress’ intent for yearly 
growth in the use of renewable fuels, evidenced by the 2005 and 2007 mandates for such 
growth.”10 

 
A substantial inventory of RINs was carried over into 2019 and 2020 that would be 
available to small refineries and other obligated parties to use for compliance. 

 
In its final rulemaking for the 2020 RVO, the EPA estimated that there were 3.48 

billion 2018-vintage RINs carried over into 2019 and available for compliance with that 
year’s standards.11  This was equivalent to 17.4% of the 2019 total renewable fuel 
standard, close to the 20% carryover limit (the estimates implied that the number of D6 
RINs was 18.7% of the implied conventional biofuel requirement).  The EPA assumed 
that the same number of 2019 carryover RINs would be available to meet the 2020 
standards, and as a result the RIN bank represented a nearly identical percentage of the 
2019 total renewable fuel standard (the same is the case for D6 RINs). 

 
The latest data available from the EPA indicate that the carryover RIN bank is likely 

somewhat lower but still large.  As of Jan. 10, 2021, there were 2.53 billion 2019 RINs 
and 17.17 billion 2020 RINs available.12  (The 2019 compliance deadline for small refiners 
was extended, and the EPA has proposed further extending it along with the 2020 
compliance deadline for all obligated parties.) 

 
As discussed above, since the annual RVOs are expressed as percentages, the 

actual volumes of renewable fuels required in 2020 fell proportionally with gasoline and 
diesel consumption.  However, the number of carryover RINs from prior years was 
unaffected.  Therefore, the carryover RIN bank would have covered an even larger share 
of the effective 2020 requirements.  If there were 2.53 billion 2019 RINs carried over into 
2020, they would have represented 12.6% of the original 2020 volume obligations.  If it is 
assumed that fuel usage fell 12% in 2020, carryover RINs would have met 14.3% of the 
actual requirement.  That is, contrary to the arguments in the waiver requests, the 
pandemic made it somewhat easier to meet the 2020 RVOs in aggregate. 

 
Additionally, D6 RIN prices were at historical lows in 2019 and remained subdued 

for most of 2020, as a result of the expansion in the number of small refinery exemptions 

 
9 73 FR 47183 
10 73 FR 47172 
11 Nick Parsons, “Carryover RIN Bank Calculations for 2020 Final Rule,” U.S. EPA Office of Transportation 
and Air Quality (December 3, 2019), available at www.regulations.gov docket number EPA-HQ-OAR-2019-
0136-2052. 
12 EPA, Public Data for the Renewable Fuel Standard, available at https://www.epa.gov/fuels-registration-
reporting-and-compliance-help/available-rins.  There are also 27 million 2018 RINs available for compliance 
with the 2019 standards. 

http://www.regulations.gov/
https://www.epa.gov/fuels-registration-reporting-and-compliance-help/available-rins
https://www.epa.gov/fuels-registration-reporting-and-compliance-help/available-rins


granted over the last few years.  The average price of a D6 RIN was 18 cents in 2019 
and 43 cents in 2020, both of which are low compared to prices experienced since 2013 
(Exhibit 1).  This provided an inexpensive means of RFS compliance for any refiners that 
did not obtain a sufficient number of RINs through biofuel blending. 

 
Exhibit 1: Distribution of Weekly Average D6 RIN Prices, 2013-2020 

 
Source: RFA analysis of OPIS data 
Note: The distribution shows the number of weeks from 2013 to 2020 that the RIN 
price was within a certain range. 

 
Academic research and the EPA’s own statements establish that refiners pass 
along the cost of RINs via the price they charge for fuels in the wholesale market.   

 
It is widely accepted, including by many refiners and EPA itself, that obligated 

parties are able to pass through their RIN costs to buyers of refined product at the 
wholesale level. This, along with the large available RIN bank, would have kept refiners 
from experiencing economic harm in connection with complying with the RFS in 2019 and 
2020. 

 
The EPA in 2015 stated, “Merchant refiners . . . should not therefore be 

disadvantaged by higher RIN prices, as they are recovering these costs in the sale price 
of their products.”13  In its 2017 Denial of Petitions for Rulemaking to Change the RFS 
Point of Obligation, the EPA elaborated further: “When RIN prices rise, the market price 
of the petroleum blendstocks produced by refineries also rise to cover the increased RIN 

 
13 Dallas Burkholder, “A Preliminary Assessment of RIN Market Dynamics, RIN Prices, and Their Effects,” 
U.S. EPA Office of Transportation and Air Quality (May 14, 2015), available at www.regulations.gov docket 
number EPA-HQ-OAR-2015-0111-00062. 

http://www.regulations.gov/


costs, in much the same way as they would rise in response to higher crude oil prices. 
The effective price of renewable fuels . . . however, decreases as RIN prices increase. 
When renewable fuels are blended into petroleum fuels these two price impacts generally 
offset one another for fuel blends such as E10.”14  Later in 2017, in its Renewable Fuel 
Standard Program Standards for 2018 and Biomass-Based Diesel Volume for 2019: 
Response to Comments, the Agency flatly stated, “EPA has invested significant 
resources evaluating the impact of high RIN prices on refiners.  After reviewing the 
available data, EPA has concluded that refiners are generally able to recover the cost of 
RINs in the prices they receive for their refined products, and therefore high RIN prices 
do not cause significant harm to refiners.”15 

 
The small refineries’ request that a general waiver be provided only to them is 
inconsistent with the statutory requirement that any waiver be nationwide in scope, 
and their request is actually an attempt to circumvent a court ruling.   

 
As discussed above, the letter for the group of small refineries fails to demonstrate 

severe economic harm because it acknowledges that the difficulties experienced by the 
industry were caused by “the COVID-19 pandemic and the precipitous drop in crude oil 
prices due to the Russia-Saudi Arabia disagreement” and were not specific to the 
implementation of the RFS.  Additionally, waivers were requested for the 2019 and 2020 
compliance years, which are now in the past; given that such waivers would not change 
biofuel volumes or transportation fuel prices in those years, severe economic harm cannot 
be shown according to EPA’s past general waiver decisions. 

 
Additionally, the specific actions requested by the attorney for the small refineries 

are contrary to a plain reading of the statute.  The letter indicated that the group was 
“requesting that the [EPA] use its waiver authority to provide relief to small refineries for 
the 2019 and 2020 compliance years by waiving small refineries’ RFS renewable volume 
obligations.”  However, CAA section 211(o)(7)(A) clearly states, “The Administrator, in 
consultation with the Secretary of Agriculture and the Secretary of Energy, may waive the 
requirements . . . by reducing the national quantity of renewable fuel required.” (Emphasis 
added).  The following, CAA section 211(o)(7)(C) then continues, “A waiver granted under 
subparagraph (A) shall terminate after 1 year, but may be renewed by the Administrator 
after consultation with the Secretary of Agriculture and the Secretary of Energy.”  It is 
evident that granting a waiver to a subset of obligated parties would not be national, and 
a waiver covering 2019 and 2020 would not be for one year. 

 
This is amplified by the EPA’s statements in its 2008 and 2012 decisions not to 

grant general waivers.  In its 2008 decision, the Agency explained, “EPA believes that it 
would be unreasonable to base a waiver determination solely on consideration of impacts 
of the RFS program to one sector of an economy, without also considering the impacts 
of the RFS program on other sectors of the economy or on other kinds of impact.”16  It 

 
14 U.S. EPA, “Denial of Petitions for Rulemaking to Change the RFS Point of Obligation,” (November 22, 
2017), available at www.regulations.gov docket number EPA-HQ-OAR-2016-0544. (EPA’s emphasis) 
15 U.S. EPA, “Renewable Fuel Standard Program Standards for 2018 and Biomass-Based Diesel Volume 
for 2019: Response to Comments,” (December 12, 2017), available at www.regulations.gov docket number 
EPA-HQ-OAR-2017-0091-4990 
16 73 FR 47172 

http://www.regulations.gov/
http://www.regulations.gov/


subsequently addressed the refining industry in particular, noting that the “decision will 
affect not only refiners, importers and other regulated parties in Texas but also refiners, 
importers, and other regulated parties throughout the nation who must comply with the 
renewable fuel standards and other requirements in order to produce gasoline and 
renewable fuel for use in the United States.  A waiver would affect the national volume of 
renewable fuel that is required, and would therefore affect parties all across the nation 
who produce gasoline or renewable fuel.”17 

 
Regarding the timeframe for the waiver, in its 2012 decision the Agency noted, 

“EPA clearly has authority to grant a waiver for a period of one year only, and any renewal 
would need to be the subject of a separate, if related, action.”18   

 
This request utterly fails to meet the criteria for a waiver.  That’s because it is 

actually a thinly veiled attempt to get the EPA to use its general waiver authority to 
circumvent both the Tenth Circuit decision and the Agency’s established process for 
considering petitions for individual small refinery exemptions. 

 
The petitioners did not provide any analysis substantiating the need for a waiver, 
as called for in the EPA’s 2008 guidance on future requests for waivers. 

 
In its 2008 waiver decision, the EPA established guidance on future requests for 

waivers.  The Agency advised, “EPA expects that applicants would provide a 
comprehensive and robust analytical basis for any claim that the RFS itself is causing 
harm, and the nature and degree of that harm.”19  The governors’ letters were two pages 
in length and did not include any analysis.  The letter from the attorney for the group of 
small refineries was lengthier and included an aptly titled “Argument” section, but that 
focused on legal issues and did not contain what could be described as an analysis.  The 
Agency’s 2008 guidance indicated that petitions that lacked such substantiation could be 
denied without an opportunity for comment. 

 
There has been no severe environmental harm from the RFS. To the contrary, 
academic research shows the RFS has reduced greenhouse gas emissions and 
improved air quality. 

 
The EPA noted in its Notice of Receipt of Petitions that it had “received a letter 

from the National Wildlife Federation suggesting that relief could be granted on the basis 
of severe environmental harm.”  This organization does not qualify to submit a petition to 
the EPA for a waiver on the basis of severe environmental harm, since CAA section 
211(o)(7)(A) establishes that the Administrator “may waive the requirements . . . in whole 
or in part on petition by one or more States, by any person subject to the requirements of 
this subsection, or by the Administrator on his own motion.”  The NWF does not fall under 
one of those categories. 

 

 
17 73 FR 47184 
18 77 FR 70758 
19 73 FR 47183 



In its 2012 waver decision, the EPA received comments that raised the issue of 
potential environmental impacts of the RFS.  Since no individuals or organizations 
meeting the CAA criteria to file a petition had raised this as an issue, the Agency 
determined, “With respect to the environmental impacts of increased renewable fuel use, 
the waiver requests are not based on a claim of severe harm to the environment.”  In its 
letter last May supporting the governors’ waiver requests, NWF openly acknowledges, 
“These waiver requests are based upon a demonstration of ‘severe economic harm.’”20 

 
Given that the NWF letter cannot be considered a waiver petition under the criteria 

established in the CAA and that none of the petitions that were received by the EPA 
requested a waiver on the basis of severe environmental harm, the EPA should not 
consider such a claim in making its decision about the 2019 and 2020 waiver requests. 

 
Still, since the EPA mentioned the NWF in its notice, we will take this opportunity 

to set the record straight on the environmental benefits of ethanol and the flaws in the 
NWF’s allegations.   

 
The first allegation in the letter is a well-worn one for the NWF: that the RFS has 

caused land use change.  Notably, the letter acknowledges that EPA’s Second Triennial 
Report to Congress “declined to draw a direct connection between observed land use 
change and the RFS.”21  It then refers to “subsequent research,” which is actually a 
continuation of work that Tyler Lark, Holly Gibbs and Christopher Wright have been 
conducting since 2013 and which was considered and cited in the EPA’s report.  A 
common thread across this research is the erroneous usage of satellite-based imagery, 
and specifically the use of a U.S. Department of Agriculture (USDA) database for a 
purpose for which it was not suited. 

 
These fundamental flaws were examined in a paper by the Laboratory for Applied 

Spatial Analysis at Southern Illinois University Edwardsville (SIUE-LASA).22  It noted that 
the research by Lark et al. has relied heavily on use of the USDA’s Cropland Data Layer 
(CDL), which assigns land type categories using satellite imagery.  The research 
suggests there has been conversion of grassland and other “native” lands to cropland 
since the RFS was established.  However, the CDL has shortcomings that render it poorly 
suited for this type of analysis, notably the inability to differentiate between grassland 
types (native prairie, Conservation Reserve Program, grass hay, grass pasture and 
fallow/idle grasslands), a problem USDA itself has recognized.  Additionally, the research 
is prone to reflecting “false change,” in which a higher share of actual cropland is 
recognized in the newer, more-accurate CDL versions than in older, less-accurate 
versions, thus giving the appearance that cropland expanded.  The authors from SIUE-
LASA summarized their findings by saying, “There are major concerns regarding both the 

 
20 Letter from National Wildlife Federation President and CEO Collin O’Mara to EPA Administrator Andrew 
Wheeler (May 29, 2020). 
21 U.S. EPA. Biofuels and the Environment: Second Triennial Report to Congress (Final Report, 2018). U.S. 
Environmental Protection Agency, Washington, DC, EPA/600/R-18/195, 2018. 
22 Pritsolas J. and R. Pearson. 2019. “Critical Review of Supporting Literature on Land Use Change in the 
EPA’s Second Triennial Report to Congress.” Available at: https://ethanolrfa.org/wp-
content/uploads/2019/07/SIUE-Review-of-Land-Use-Change-Literature-07-2019.pdf  

https://ethanolrfa.org/wp-content/uploads/2019/07/SIUE-Review-of-Land-Use-Change-Literature-07-2019.pdf
https://ethanolrfa.org/wp-content/uploads/2019/07/SIUE-Review-of-Land-Use-Change-Literature-07-2019.pdf


data and the methods that were used by the researchers, which call their findings into 
question.” 

 
The NWF’s allegation that “the federal corn ethanol mandate is contributing to 

climate change” is completely contrary to the scientific consensus, as clearly 
demonstrated in two studies released in early 2021.  A paper by scientists from Harvard 
University, Tufts University and Environmental Health & Engineering Inc. shows that 
using corn-based ethanol in place of gasoline reduces GHG by almost half.23 The “central 
best estimate” of corn ethanol’s carbon intensity is 46% lower than the average carbon 
intensity of gasoline, according to the study’s authors, with some corn ethanol in the 
market today achieving a 61% reduction.  A second study by Life Cycle Associates found 
that the RFS reduced carbon dioxide-equivalent GHG emissions by nearly one billion 
metric tons between 2008 and 2020.24  Additionally, the reduction in GHG emissions 
associated with corn-based ethanol has long been reflected in Argonne National 
Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Technologies 
(GREET) model and is recognized by the California Air Resources Board. 

 
Finally, the NWF made a brief and highly generalized comment that ethanol 

worsens air quality.  This is contrary to real-world emissions trends.  Since the RFS was 
adopted in 2005, ethanol consumption has grown more than threefold, while EPA data 
from air monitors show that carbon monoxide concentrations are down 31%, nitrogen 
dioxide is down 22%, ozone is down 13%, fine particulate matter is down 37% and sulfur 
dioxide is down 81%. The levels of all these pollutants have now fallen below the national 
standard. 

 
Conclusion 

 
A waiver of the RFS is not justified, for the reasons discussed in detail above.  The 

requests that have been submitted by the governors and the group of small refineries fail 
to meet the statutory criteria as interpreted in the EPA’s prior waiver decisions.  Therefore, 
we ask that the Agency expeditiously reject all of the requests. 

 
Thank you for the opportunity to submit these comments.  RFA appreciates your 

consideration. 
 
Sincerely, 
 
 
 
 
Geoff Cooper 
President & CEO 
 

 
23 Scully M. et al. 2021. “Carbon intensity of corn ethanol in the United States: state of the science.” Environ. 
Res. Lett. in press https://doi.org/10.1088/1748-9326/abde08  
24 Unnasch. S. and Parida D. 2021. “GHG Reductions from the RFS2 – A 2020 Update.” Life Cycle 
Associates. Available at: https://ethanolrfa.org/wp-content/uploads/2021/02/LCA_-_RFS2-GHG-
Update_2020.pdf  
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Critical Review of Supporting Literature on Land Use Change in the EPA’s Second 
Triennial Report to Congress 

Joshua Pritsolas and Randall Pearson 
Laboratory for Applied Spatial Analysis 

 

Prepared for: Renewable Fuels Association 
 

Executive Summary 
This report evaluated the methods and data utilized in the land cover/land use change (LCLUC) 

research by Wright and Wimberly (2013), Lark et al. (2015), and Wright et al. (2017). These studies 
received a fair amount of consideration in the Environmental Protection Agency’s (EPA) Second Triennial 
Report to Congress (2018). However, there are major concerns regarding both the data and the methods 
that were used by the researchers, which call their findings into question. 
 
Major Concerns with Data Inputs: 

• A critical issue for the reviewed studies is their reliance on the satellite-based Cropland Data 
Layer (CDL) published by the U.S. Department of Agriculture (USDA) as the primary data. The 
CDL has several shortcomings, including the inability to differentiate between grassland types 
(e.g., native prairie, Conservation Reserve Program, grass hay, grass pasture and fallow/idle 
grasslands). As the USDA’s National Agricultural Statistics Service (NASS) (2018b) acknowledges, 
“Unfortunately, the pasture and grass-related land cover categories have traditionally had very 
low classification accuracy in the CDL.” In fact, NASS (2018b) recommends that researchers use 
the National Land Cover Dataset (NLCD) for all non-agricultural land cover studies. 

• The CDL has improved over time (due to changes in satellite temporal, spatial, and spectral 
resolutions). However, changes in the accuracy of the CDL make comparisons of land cover and 
land use across an extended period problematic. As a result, some of the LCLUC estimated in the 
studies by Wright and Wimberly (2013), Lark et al. (2015), and Wright et al. (2017) might 
represent false change, in which a higher share of actual cropland is recognized in the newer 
CDL versions than in older versions, thus giving the appearance that cropland expanded. 

• Wright and Wimberly (2013), Lark et al. (2015), and Wright et al. (2017) identified increases in 
croplands over the conterminous United States. However, data from the USDA’s NASS (2018a) 
indicate that croplands decreased from 2008 to 2012, and by 2017 cropland acres were below 
2007 levels. 

• For this report, an in-depth examination of the 2008 and 2012 CDLs was performed for Iowa, 
since Lark et al. (2015) identified the state as having a substantial amount of land conversion 
and since their data set was subsequently used by Wright et al. (2017). Additionally, the state is 
the top producer of ethanol, with approximately 27 percent of capacity as of the end of 2018. 

• Assessment of the USDA NASS (2018a) acreage estimates by crop showed that from 2008-2012 
in Iowa there was a net increase of only 38,000 acres of cropland as opposed to 263,468 acres 
as reported by Lark et al. (2015) and 295,100 acres as reported by Wright et al. (2017). 

• Analysis of the CDL at the agricultural district level in Iowa showed that critically different types 
of misclassification were present in two of Iowa’s distinctly different districts (north central and 
south central). 
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• Misclassification in south central Iowa, where marginally productive cropland is located, showed 
improvements over time in the CDL by 2012. However, the implications of a comparative 
analysis using a less-accurate 2008 CDL as the base year and comparing it with more-accurate 
2012 CDL results in false change. The more-accurate 2012 CDL accounted for nearly 100 percent 
of the acreage of corn and soybeans, whereas the less-accurate 2008 CDL accounted for just 
over 80 percent of acreage (i.e., misclassification was more extensive). As a result, a significant 
share of what was concluded to be land use change likely was a reflection of better accounting 
for crop acreage in the CDL over time. 

• It is of major importance to consider how studies like Wright and Wimberly (2013), Lark et al. 
(2015), and Wright et al. (2017) were impacted by false change due to misclassification. 

 
Major Concerns with Assessed Methods: 

• All studies insinuated that cropland expansion was in some amount attributable to the 

Renewable Fuel Standard (RFS) program; however, this assumption was not quantified and even 

the EPA (2018) warned about the issues with attributing causation. 

• The major concerns with Wright and Wimberly (2013) were: (1) the lack of an accuracy 
assessment for their aggregated classification of land types into a corn/soybean category and a 
grassland category and (2) the use of only two isolated years (a start and end point) to measure 
LCLUC. The lack of an accuracy assessment is most problematic because without the accuracy 
assessment it does not give the end-user a high level of confidence in the classification to 
measure change. 

• The main issues with the Lark et al. (2015) study were: (1) the aggregation process that tried to 
mitigate the CDL’s inability to differentiate between grassland types (e.g., native prairie, 
Conservation Reserve Program, grass hay, grass pasture, fallow/idle grasslands, etc.); (2) the lack 
of evidence that supported the claim that aggregation mitigated between-class error; and (3) 
the lack of an accuracy assessment for the LCLUC data set created in this study. 

• Lark et al. (2015) reported the omission of 9.4 million acres of unidentifiable long-term land 
cover (termed “flip-flop”). This omitted land cover of 9.4 million acres was greater than their 
reported total of 7.34 million acres of gross conversion from non-croplands to croplands. 

• Wright et al. (2017) conducted an accuracy assessment of the Lark et al. (2015) adjusted CDL, 
but the methods used were ambiguous and the results of this accuracy assessment were not 
elaborated. 

• Wright et al. (2017) introduced a uniform bias correction factor across the entire conterminous 
U.S., which was problematic because non-uniform spatial and temporal errors exist in each of 
the annual CDLs. 

• Wright et al. (2017) reported that the original Lark et al. (2015) data set needed to be corrected 
due to 12 percent of the identified change being on non-arable lands.  

 
Overall, considerations of the reviewed studies (Wright and Wimberly 2013; Lark et al. 2015; 

Wright et al. 2017) revealed that fundamental concerns were present throughout the research. The data 
utilized in these studies contained many inherent issues, and the methods that were implemented to 
address these issues were presented with many assumptions and lacked evidence to support the claims. 
Although these studies brought novel ideas to the forefront in addressing the challenges and 
complexities of understanding national LCLUC, there was still considerable uncertainty surrounding the 
results. There remain many shortcomings that bring the validity of these studies’ findings regarding 
LCLUC into question and until these shortcomings are addressed, policy makers would be best suited to 
remain skeptical. 
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Introduction 
The EPA is in process of proposing a reset of the volume requirements associated with the RFS 

program. A key component to the assessment and decision process of the upcoming reset has been the 
Second Triennial Report to Congress published by the EPA (2018). In this thorough report, one of the 
EPA’s focuses was on environmental and conservation impacts of the current RFS program. Throughout 
this report, the EPA cited a multitude of different research conducted, but gave a fair amount of 
consideration to a few studies that focused on cropland expansion throughout the United States after 
the expansion and extension of the RFS2 under the Energy Independence and Security Act of 2007. 

The major findings from these studies suggested that large-scale planting of corn grain and 
soybeans has increased and changed certain land uses, which resulted in negative environmental and 
resource conservation impacts. Furthermore, these studies also insinuated that increases in biofuel 
demands and production over the study time-periods were directly or indirectly attributable to the RFS 
program.  

Given the market and economic impacts that could arise from the upcoming reset to the RFS 
program, the Renewable Fuels Association (RFA) was interested in a review of specific studies that have 
been presented in the Second Triennial Report to Congress (EPA 2018). As an independent consultant, 
the Laboratory for Applied Spatial Analysis at Southern Illinois University Edwardsville was contracted by 
RFA to assess several of these studies. The primary review that will be presented in the following 
sections of this report will be concerned with studies conducted by Wright and Wimberly (2013), Lark et 
al. (2015), and Wright et al. (2017). These were the primary studies cited by the EPA (2018) that 
discussed land use change in the United States. This review will be focused on determining the validity 
of the data sources (including imagery products) and methods utilized in these studies. During this 
review, other literature and data sources will be referenced to verify the integrity of these studies. 

A basic overview of this report’s layout will consist of four sections. First, a highlight of the 
methods and findings of Wright and Wimberly (2013), Lark et al. (2015), and Wright et al. (2017). Next, a 
critical assessment of the pros and cons of the methods that were used in these studies. Third, a review 
of the input data source used in these studies and also an analysis of the CDL compared to the USDA 
NASS cropland totals. Lastly, a collective overview of the challenges presented in this review and 
potential recommendations will be discussed. 

 

Literature Review 
This section will briefly discuss the data assessed, methods used, and results presented by 

Wright and Wimberly (2013), Lark et al. (2015), and Wright et al. (2017). This section is intended only as 
an overview of these studies. It must be noted that none of the three studies reviewed in this report 
used a base year of 2007 for their analysis. This is important because for crops to qualify as feedstock for 
biofuels used toward the RFS2, they must come from land cleared or cultivated prior to the enactment 
of the Energy Independence and Security Act of 2007. The implications of these studies using a base 
year different than 2007 could misrepresent the results, since a comparative analysis of the impacts of 
RFS2 would want a base year that started before the policy was implemented.  

It is also important to consider that U.S. corn acreage fell by just over 7.5 million acres from 
2007 to 2008 (NASS 2018a); therefore, any comparative analysis that used a relatively low point as the 
base year, such as 2008 for comparative analysis would overstate the possible change in land use/cover. 
This is of most importance regarding the Lark et al. (2015) and Wright et al. (2017) studies since these 
studies used a base year of 2008. With this said, it is understood that the CDL did not have full 
nationwide coverage prior to 2008, but the CDL did have 21 soybean and corn states available in 2007—
of which were states that showed much of the cropland expansion in both Lark et al. (2015) and Wright 
et al. (2017). 
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The first study reviewed was conducted by Wright and Wimberly (2013). In this study, the 
authors investigated LCLUC in the Western Corn Belt (WCB) of the United States from 2006-2011. The 
authors utilized the annual CDL collected by the USDA NASS. These data were all used at 56-meter 
resolution (unknown if and how the data at 30 meters were resampled), with certain sub-categories 
being aggregated into two classes: (1) a generalized grassland category (e.g., native grassland, grass 
pasture, grass hay, fallow/idle cropland, and pasture/hay) and (2) a corn/soybean category. The main 
portion of this study conducted a bitemporal comparison between 2006 and 2011 for the entire WCB 
that resulted in a binary output of change or no change. However, certain states (Iowa and North 
Dakota) were compared from 2001-2011 because these data were available at the time of the study. 
Once these data were collapsed into the two classes, a five-pixel by five-pixel majority filter was applied 
to reduce small areas that could have been misclassified. After spatial filtering, the resulting image was 
aggregated to 560-meter resolution as percent change from grassland to corn/soybean. This newly 
aggregated data was then smoothed with a quartic kernel function at a bandwidth of 10 kilometers. 
These methods resulted in annual conversion rates from 2006-2011 in the WCB of approximately 1 to 
5.4 percent and a total of approximately 1.3 million acres of grassland converted to corn/soybean. 
 The second study investigated was researched by Lark et al. (2015). In this study, a similar 
approach to Wright and Wimberly (2013) was undertaken, but a larger data set was utilized, and more 
robust methods were implemented to deal with potential pitfalls from the Wright and Wimberly (2013) 
study. The data set used in this research was the 56-meter CDL of the conterminous United States and 
investigated LCLUC from 2008-2012 (all 30-meter data was resampled using nearest neighbor method). 
Different methods were utilized by Lark et al. (2015) to address limitations of a bitemporal approach. In 
this sense, the authors looked at a trajectory-based approach that attempted to account for errors and 
variability in the data across time and space. Furthermore, their analysis also utilized ancillary data from 
the Multi-Resolution Land Characteristics Consortium’s (MRLC) NLCD and the United States Geological 
Survey’s Land Cover Trends Dataset to identify long-term trends of LCLUC. Lark et al. (2015) aggregated 
the entire 2008-2012 CDL data set by year into two classes: crop and non-crop. Once aggregated, these 
data were stacked into 5-year combinations of crop or non-crop to create “trajectories” (also 
considering how the NLCD 2001 and 2006 was classified in the beginning of this temporal order). The 
authors then applied a spatial filter (3-by-3 majority) to reduce misclassification errors and a temporal 
filter that looked at the patterns of each pixel to classify them as change or no change (to/from crop or 
non-crop). It must be noted that the authors removed pixels that displayed a “flip-flop” pattern due to 
no identifiable long-term consistent pattern. Lastly, the authors also utilized a minimal mapping unit 
(MMU) of approximately 15 acres (20 pixels), which also omitted small area change. Overall, the 
trajectory-based approach resulted in an adjusted CDL data set that, when analyzed, revealed that gross 
conversion of non-crop to crop was at 7.34 million acres and gross conversion of crop to non-crop at 
4.36 million acres (2.98 million net cropland expansion). Furthermore, the authors identified that 77 
percent (5.7 million acres) of the gross conversion occurred on grasslands. Lastly, and of interest, was 
the amount of reported “flip-flop” or intermittent cropland, totaling 9.4 million acres. 
 The final study reviewed was conducted by Wright et al. (2017), which investigated cropland 
expansion in relation to ethanol refineries in the United States from 2008-2012. The authors of this 
study used the Lark et al. (2015) data set but considered two different aspects that the previous study 
did not address. First, Wright et al. (2017) added an accuracy assessment and bias correction factor to 
the Lark et al. (2015) data set. Next, Wright et al. (2017) investigated the rates of cropland conversion 
based on incremental distances (25, 50, 75, and 100 miles) from ethanol refineries. Important to the 
methods used, Wright et al. (2017) acquired high-resolution (1 to 2-meter) aerial imagery from the 
National Agricultural Imagery Project (NAIP) to test the accuracy of the Lark et al. (2015) data set. In this 
accuracy assessment, the authors used a stratified random sample (n = 150) from all strata as ground-
truth testing points with NAIP references. Results from the accuracy assessment revealed that producer 
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and user accuracies (which will be explained in the following section) where high for identifying crop 
(88.6 and 98 percent, respectively) and non-crop (99.6 and 98 percent, respectively), with slightly less 
producer and user accuracies reported for cropland conversion (72.7 and 70.4 percent, respectively) and 
abandonment (97.5 and 43.2 percent, respectively). These accuracy assessments of the Lark et al. (2015) 
data set showed high bias (125 percent) in overestimation of abandoned croplands, with less biases in 
estimating crops (-10 percent), non-crops (2 percent), and converted cropland (3 percent). Wright et al. 
(2017) introduced a bias correction factor to only the abandoned cropland class of the Lark et al. (2015) 
data set. This correction factor was uniformly applied across the entire conterminous United States data 
set to correct for the reported overestimation of identifying abandoned croplands but did not correct 
for the other slightly less biases in the other classifications. With respect to the results from their 
analysis, the authors found that approximately 4.2 million acres of non-cropland were converted to 
cropland within a 100-mile radius of ethanol refineries (another 2 million acres outside of this range). Of 
these 4.2 million acres of converted non-cropland, approximately 3.6 million acres were converted from 
grasslands within a 100-mile radius of ethanol refineries (another 1.5 million acres were outside the 
100-mile radius). Wright et al. (2017) did not report a nationwide total area of crop to non-crop 
reversion. The authors only showed a bar chart with crop to non-crop acreages at 25, 50, 75, and 100-
mile distances of refineries and indicated that total reversion was “substantially reduced” after the bias 
correction (Wright et al. 2017, 4). However, the authors did report the total abandonment of crop to 
grasslands at 600,000 acres within 100 miles of ethanol refineries and an additional 590,000 acres 
outside of the 100-mile radius (total reversion to grasslands of approximately 1.2 million acres). 
 

Assessment of Applicable Methods 
 

Wright and Wimberly 2013 
To begin this section a short discussion of the methods outlined in Wright and Wimberly (2013) 

will be discussed. Wright and Wimberly (2013) acknowledged that two major issues were present in 
their research. First, by using a short time-period and bitemporal comparison (2006 and 2011) to 
suggest long-term patterns of land conversion may have been misleading. In other words, the authors 
recognized that short-term land use with rotational variability may be more reflected in their study 
instead of long-term LCLUC. Furthermore, this limitation in their research was identified by other 
researchers (Lark et al. 2015; Lark et al. 2017; Wright et al. 2017) and has also been discussed as a 
potential overestimation in conversions to cropland (Lark et al. 2015; Dunn et al. 2017; EPA 2018). The 
total gross conversion of grasslands presented by Wright and Wimberly (2013) of 1.97 million acres from 
2006-2011 in the WCB (N. Dakota, S. Dakota, Nebraska, Minnesota, and Iowa) was a slightly higher 
estimation when compared with Wright et al. (2017), who reported gross conversions of the same area 
that totaled approximately 1.81 million acres over a shorter (and different) time-period from 2008-2012. 

Lastly, Wright and Wimberly (2013) discussed the limitations of the CDL to differentiate 
between grassland types (e.g., native prairie, Conservation Reserve Program, grass hay, grass pasture, 
fallow/idle grasslands, etc.). In doing so, the researchers aggregated these categories to one large class 
to attempt mitigation of classification errors in the sub-categories. Although, this assumption may 
potentially decrease the classification error between grassland types, the authors presented no accuracy 
assessment to support this assumption. Furthermore, it is unknown at what level errors could have still 
been occurring between the aggregated general grassland class and the aggregated corn/soybeans class. 
This point becomes more important when considering the CDL has varying accuracy levels for different 
land uses and the accuracies for these land uses across different states and different temporal coverages 
can have a wide range of overall errors (Dunn et al. 2017; NASS 2018b). 
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 Although this study and the methods used were innovative and well received according to the 
EPA (2018), other researchers have indicated that this study has potential errors that were not 
systematically dealt with properly (Lark et al. 2015; Dunn et al. 2017; Lark et al. 2017). Due to these 
limitations, other research followed by attempting to deal with these shortcomings. 
 

Lark et al. 2015 
 Assessment of methods used by Lark et al. (2015) attempted to account for the peer-reviewed 
limitations found in the Wright and Wimberly (2013) research. Although Lark et al. (2015) introduced a 
trajectory-based approach that incorporated intermittent years, along with ancillary data to better 
understand long-term change, a critical assessment of Lark et al. (2015) brings several questions to the 
forefront. To begin with, as discussed in the evaluation of Wright and Wimberly (2013), Lark et al. (2015) 
also utilized an aggregation process; however, these authors aggregated all CDL classes to either crop or 
non-crop. This “super class” aggregation process introduced by Lark et al. (2015) could be problematic in 
locations where croplands other than those used to produce biofuel feedstocks were contributing to 
cropland expansion totals. Furthermore, Lark et al. (2015) also did not provide an accuracy assessment 
that this aggregation process mitigated misclassification errors, they only provided a brief description 
that was an assumption in the supplemental documentation. As other researchers have pointed out, 
even a small error in differentiating between aggregated crop and non-crop classes in a large-scale study 
could present biased results (Sandler and Rashford 2018) or the margin of error could be greater than 
the reported conversions (Dunn et al. 2017). Furthermore, it is likely that the errors were not evenly 
distributed across the geography of the United States and a good portion of these errors could likely 
occur in conversion areas (Dunn et al. 2017) or along transition zones between different land uses (since 
transition zones can confound classification models). Lacking provisions of an assessment of how 
commission and omission errors were handled by the aggregation process, on a temporal and spatial 
basis, decreases the robustness of this type of study. 

Second, Lark et al. (2015) used a trajectory-based approach that resulted in a binary output of 
change or no change data layer that was stacked over the 5-year study period, and also incorporated 
NLCD products from 2001 and 2006 (Figure 1). 
 

 
Fig. 1: Example of binary change from 2008-2012 (Lark et al. 2015). 

 
The authors focused on classes that showed patterns of change or no change, and attempted to place 
noise patterns into their appropriate change or no change class. The authors also discussed that other 
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outcomes of “flip-flop” were removed but did not specify how many different combinations occurred or 
locations of where these other possible combinations resulted (since there are 2^5 = 32 possible 
outcomes). However, Lark et al. (2015) did separate out the “flip-flop” or intermittent cropland 
rotations, which resulted in approximately 9.4 million acres of assessed land use. The authors briefly 
mentioned this interesting portion of assessment but did not provide any further evaluation of where 
this intermittent cropland was distributed, nor did they discuss the potential likelihood of errors in 
misclassification impacting these areas. 

Next, the minimal mapping unit (MMU) method that Lark et al. (2015) utilized was 
acknowledged by the authors as a potential limitation that would not properly capture small (< 15 acres 
or approximately 20 pixels) LCLUC. Lark et al. (2015) suggested that the MMU technique would: (1) 
reduce small areas of false change due to less accuracy in earlier years of the CDL and (2) improve 
comparisons of whole field conversion (> 15 acres) with NASS surveyed statistics. Lark et al. (2015) did 
not report how much total acreage the MMU technique omitted from the study or the spatial 
distribution of the omitted acreage. Concerning the potential loss of small changes, which a majority 
could result from small areas of farm fields being reverted to non-crop (short-term or long-term), this 
process potentially omitted real change from the analysis. In total, these possible reversions (that were 
omitted) across regions or, in this case, the United States could be quite substantial. Furthermore, Lark 
et al. (2015) discussed the use of MMU to increase comparability with NASS statistics, which becomes 
even more confounding. Lark et al. (2015) cited NASS figures that showed a net increase of 2.6 million 
acres of cultivated cropland from 2008-2012, which was similar to their net increase of 2.98 million 
acres. However, NASS (2018a) statistics for total cropland from 2008-2012 actually showed a decrease in 
cropland of approximately 1.1 million acres (Figure 2). 
 

 
Fig. 2: NASS total croplands from 2000-2017 (NASS 2018a). Green bars highlight the Lark et al. (2015) study time-period. 

 
 Lastly, the use of the NLCD as a reference to help aid in establishing long-term crop or non-crop 
patterns and the mapping techniques used by Lark et al. (2015) will be discussed. The use of the NLCD to 
assist in modifying the CDL aggregated crop and non-crop classes can aid in better estimations of LCLUC 
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(Lark et al. 2015; Dunn et al. 2017; Lark et al. 2017; Wright et al. 2017; EPA 2018). However, Dunn et al. 
(2017) made it clear that accuracy assessments must be completed to give users a sufficient level of 
confidence in the resulting LCLUC maps/analysis. Moreover, Lark et al. (2015) did not provide an 
accuracy assessment and also made an assumption that the NLCD 2001 and 2006 data sets were 
accurate starting points in their analysis to assess classifications of crop/non-crop and change/no 
change. Lark et al. (2015) presented no evidence that supported this assumption of accuracy 
surrounding the NLCD data sets (this will be discussed further in following sections). Next, the mapping 
techniques used by Lark et al. (2015) raised several concerns. Some of the questionable mapping 
techniques used were: 
 

1. the gross and net conversion maps were aggregated to 5.6 km resolution for 
display, but used a color scheme that did not adequately distinguish between the 
low ends of abandonment and expansion. 

2. the relative cropland expansion map was assumed to be at 10 km resolution, with a 
scale bar that did not indicate the exclusion of values equal to zero, but indicated 
exclusion of values equal to 100. 

3. the choropleth map identifying uncultivated conversion rates was broken into 12 
classes (with odd break points) that made it difficult to discern which class certain 
ecoregions belonged. 

4. the map of most common breakout crop by region did not specify the spatial 
resolution and was confusing about what breakout truly means. 

 
Generally, the mapping techniques utilized were misleading due to changes in spatial resolutions (or 
the lack of identified spatial resolution), ramping techniques and color schemes used, and 
ambiguity. 

Overall, Lark et al. (2015) introduced methods that attempted to correct issues in the Wright 
and Wimberly (2013) study. Many of these methods were interesting attempt to deal with 
inconsistencies in the CDL temporal sequence, but many issues were also present that did not validate 
or give high confidence in the results presented. The main issues with this study were: 

 
1. the aggregation process that tried to mitigate the CDL’s inability to differentiate 

between grassland types (e.g., native prairie, CRP, grass hay, grass pasture, 
fallow/idle grasslands, etc.). 

2. the lack of evidence that supported the claim that aggregation mitigated between-
class error. 

3. the lack of an accuracy assessment for the LCLUC data set created in this study. 
 
The presence of assumptions in the methods and the lack of more robust evidence to support the claims 
presented by Lark et al. (2015) should be kept in mind when utilizing this research. 
 

Wright et al. 2017 
 The third study’s methods that will be discussed were conducted by Wright et al. (2017). In this 
study, the major discussion will surround the use of the Lark et al. (2015) data set along with the 
accuracy assessment and bias correction factor implemented by Wright et al. (2017). First, Wright et al. 
(2017) used high-resolution NAIP as a ground-truth mechanism (or reference images) for the Lark et al. 
(2015) data set. This is a common practice in remote sensing, especially since the study area was the 
entire conterminous United States. The potential of randomized sample locations being chosen from 
inaccessible locations or a variety of long-distance locations for assessment makes the use of NAIP an 
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effective measure. However, it is problematic that Wright et al. (2017) did not specify how many NAIP 
products (e.g., a single image from one year or a single image from multiple years) were used in the 
accuracy assessment. Nonetheless, the accuracy assessment presented in the supplemental 
documentation by Wright et al. (2017) gave producer and user accuracies between four classifications, 
with an overall accuracy reported at 97.5 percent (Figure 3).  

Before further discussion of the Wright et al. (2017) accuracy assessment, it would be good to 
define producer and user accuracy. First, producer accuracy can be best understood as the accuracy of a 
classification map from the perspective of the map maker and deals with classification errors that are 
omitted from a given class. Producer accuracy (as a percentage) deals with how well each class can be 
identified based on comparisons with the reference map. However, user accuracy, which is often 
referred to as the reliability of the land use map, is concerned with the utility of a map from the 
perspective of the end-user and deals with classification errors of commission into other classes. User 
accuracy (as a percentage) deals with how well the land use map represents what is actually on the 
ground. 

 

 
Fig. 3: Agreement/disagreement matrix with accuracies and bias reported (Wright et al. 2017). 

 
The easiest way to understand the agreement/disagreement matrix is to consider that non-crop 

and crop were classified as no change areas and converted and abandoned were both evaluated as 
change areas. When assessing the accuracy of no change areas (non-crop and crop), both producer (99.6 
and 88.6 percent, respectively) and user accuracies (98.0 and 98.0 percent, respectively) were relatively 
high, but no change for crop areas had a moderate bias (-10 percent) to underestimate these true 
locations.  

Next, and of more importance since this study was focused on assessing LCLUC, were the 
accuracies related to change areas (converted and abandoned). With converted areas, the producer 
accuracy was moderate at 72.7 percent, which means the data set accurately identified 72.7 percent of 
the land converted to crop in the reference NAIP. However, the user accuracy was slightly lower at 70.4 
percent, which means that only 70.4 percent of the identified lands converted to crop were actually 
converted change areas on the ground (with a small bias to overestimate conversion by 3 percent). 
Lastly, the producer accuracy to identify abandoned croplands in the reference NAIP was high at 97.5 
percent, but the user accuracy was only correctly identifying abandoned croplands 43.2 percent of the 
time (with high bias to overestimate abandonment by 125 percent).  

Several factors were important to recognize in this accuracy assessment: 
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1. although the overall accuracy assessment of the entire data set was high at 97.5 
percent, the accuracy assessment of change areas (converted and abandoned) 
resulted in high user errors (approximately 30 to 57 percent, respectively). 

2. much of the error in identifying change areas was confused by both types of no 
change areas (non-crop and crop). 

3. this accuracy assessment presented descriptive statistics, but gave no further 
statistical evidence that would suggest high levels of confidence in these accuracy 
levels or if the assessment was based on chance agreements. 

4. none of these issues were addressed in the study or the supplemental 
documentation. 

 
Based on the accuracy assessment, Wright et al. (2017) used the bias assessment to implement 

a bias correction factor to the Lark et al. (2015) data set. In this process, Wright et al. (2017) only issued 
a bias correction factor to the abandoned change areas since the bias was so high (125 percent). In 
doing so, the authors applied a bias correction factor in a uniform fashion across the entire 
conterminous United States. The assumption that this bias was distributed evenly across the United 
States was problematic. It is well documented that the CDL has variability in the errors associated with 
different crop and non-crop classes across different regions of the United States (Dunn et al. 2017; NASS 
2018b). Since no spatial assessment was provided by the authors of the distribution of their errors and 
no further evidence was provided to support this assumption, this approach may not have actually 
corrected the bias issue, but rather potentially moved the error to other locations. 

In closing, Wright et al. (2017) attempted to add robustness to the Lark et al. (2015) data set 
through a much-needed accuracy assessment and modification process. Part of this modification 
process identified and eliminated 12 percent of cropland expansion from the original Lark et al. (2015) 
data set due to this expansion occurring on non-arable lands. This phenomenon was identified as being 
problematic and was most likely what spurred the implementation of an accuracy assessment. The use 
of NAIP products as a reference to ground-truth was a solid approach to establish accuracies of 
classification. However, the exact use of NAIP as a reference to ground-truth was not clearly outlined. 
Moreover, based on the accuracy assessment provided by Wright et al. (2017), there was an indication 
that the Lark et al. (2015) data set was more adept at mapping areas of no change (non-crop and crop) 
as opposed to areas of change (converted or abandoned) based on the agreement/disagreement matrix 
(Figure 3). The attempt to adjust for bias was implemented in a spatially uniform manner, which is 
problematic since CDL classification mapping errors tend to occur in a non-uniform manner. Because of 
the lack of a more robust accuracy assessment, many of the issues that were present in the Lark et al. 
(2015) study were maintained in this study. 
 

Evaluation of Data Utilized 
The following sections will begin with a discussion on the data sets utilized in the reviewed 

studies (Wright and Wimberly 2013; Lark et al. 2015; Wright et al. 2017), specifically focusing on the 
evolution of the CDL and NLCD satellite-derived products. Next, further consideration will be discussed 
regarding the CDL’s ability to map LCLUC over time since this data set was the primary data input in the 
reviewed studies. This discussion will be focused on establishing comparisons between CDL information 
and NASS information. Specifically, small scale comparisons will be made between the CDL and NASS 
data to assess the quality of the CDL as an input to monitor and map LCLUC in the Wright and Wimberly 
(2013), Lark et al. (2015), and Wright et al. (2017) studies. Further visual assessments that were 
randomly selected to highlight issues will accompany these analyses. 
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CDL and NLCD Data Improvements 
As this report and other researchers have alluded, the CDL has undergone constant changes to 

implement classification and mapping improvements over time (Lark et al. 2015; Dunn et al. 2017; Lark 
et al. 2017; Wright et al. 2017; EPA 2018; NASS 2018b). The CDL has historically had issues with mapping 
grassland-related categories and NASS (2018b) has advised that researchers instead use the NLCD for 
studies involving non-agricultural land. The CDL has even reprocessed and reissued revised data sets for 
2008 and 2009 products (NASS 2018b) since the Lark et al. (2015) study.  

Accuracy assessments from the CDL of these products have shown a wide range of overall 
accuracies (NASS 2018b). For example, 2008, 2012, and 2017 overall accuracy for South Dakota were 
83.5, 35.0, 86.6 percent, respectively; however, Kansas, over the same three years, had overall 
accuracies of 87.5, 88.9, and 86.9 percent, respectively (NASS 2018b). These overall accuracies show 
high variability in South Dakota, with fairly high and consistent accuracies in Kansas, but overall accuracy 
is only part of the story when assessing classifications in the CDL products. Beyond the overall 
accuracies, it is critical to understand how errors are distributed across the agreement/disagreement 
matrix.  

Even when classes of non-crop and crop are aggregated together, the assumption that between-
class errors were accounted for (Wright and Wimberly 2013; Lark et al. 2015; Wright et al. 2017) needs 
to be further tested and validated. In some cases, and in certain regions, this could be accurate, but 
without evidence to support this claim across a national data set it would also be a fair assumption that 
errors are still present between non-crop and crop aggregated classes. Another factor to consider is that 
independent researchers have also shown that certain CDL reported errors can sometime be 
underestimated, such as in the 2009 and 2010 CDL errors for North and South Dakota (Sandler and 
Rashford 2018). Overall, non-uniform error in the CDL must be assessed and reported when large-scale 
studies use this data set to assess LCLUC so that the end-user can understand the strengths and 
limitations of these types of analyses. 
 The NLCD has also been assessed and results have shown improvements in classification 
capabilities over time (Wickham et al. 2010; Wickham et al. 2013; Wickham et al. 2014; Homer et al. 
2015; Danielson et al. 2016; Wickham et al. 2017). Due to the improvements to these products, the 
NLCD has issued revised products from the legacy data set of 2001 to the LCLUC products from 2006 and 
2011 (MRLC 2018). It is unknown if Lark et al. (2015) used the revised and amended 2001 and 2006 
NLCD products from 2014 that were reissued when the NLCD 2011 was released. If the non-revised 2001 
and 2006 NLCD products were used by Lark et al. (2015), then the potential for increased errors to 
establish long-term land use patterns for their study could have been present.  

Considering the improvements to the NLCD over time, the newest revisions to the NLCD 2016 
are currently under production to release in 2019 (Yang et al. 2018). Initial reports on overall accuracy 
assessments were high (ranging from 71 to 97 percent) and the outlined objectives from the NLCD 2016 
are promising. Furthermore, the NLCD will release cloud-free Landsat imagery of the entire 
conterminous United States and LCLUC products in 2 to 3-year increments from 2001-2016 (Yang et al. 
2018). These products could allow users to investigate LCLUC on a similar trajectory-based approach 
since a more robust temporal sequence would be available from the NLCD. 
 Overall, the CDL and the NLCD have committed to increasing accuracy over time and ensuring 
products are updated as data sources and classification models are improved (Wickham et al. 2010; 
Wickham et al. 2013; Wickham et al. 2014; Homer et al. 2015; Lark et al. 2015; Danielson et al. 2016; 
Lark et al. 2017; Wickham et al. 2017; NASS 2018b). Due to the efforts to improve these data sources, 
any longitudinal study may be problematic and should proceed with caution because comparisons of 
products with lesser degrees of accuracy (in early years, such as 2008 or 2009) with higher degrees of 
accuracy (in later years, such as 2012 or beyond) will produce results with false change, either in 
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reversion or conversion totals. This issue would tend to be associated with the CDL as opposed to the 
NLCD since the NLCD is designed for direct comparability of their temporal products. 
 

Evaluation and Comparison of the CDL with NASS Data 
 To begin this section, an evaluation of the 2008 and 2012 CDLs was performed in Iowa. This 
evaluation was initiated due to the conflicting results reported by Lark et al. (2015) about their findings 
being comparable with NASS figures that were presented earlier in this report (refer to the “Assessment 
of Applicable Methods” of Lark et al. 2015 section, specifically Figure 2). This evaluation considered how 
the CDL individual classification acreages compared to specific NASS (2018a) field crop totals. 
Furthermore, the comparison investigated totals at different geographic levels: state and agricultural 
districts.  

Iowa was selected as a case study area for several reasons: 
 
1. the large amount of agricultural production throughout much of the state with the 

marginal areas of grassland in the southern portion of the state. 
2. the changing physical landscape and topography from northern to southern Iowa 
3. the large amount of net conversion (5th highest of all states at 263,468 acres) 

reported by Lark et al. (2015) from 2008-2012. 
 
It must be noted that Wright et al. (2017) utilized the Lark et al. (2015) data set, so these comparisons 
presented here are applicable to the Wright et al. (2017) findings as well. 
 Iowa state-level totals from 2008-2012 considered the following field crops from NASS (2018a): 
alfalfa, corn, hay, oats, soybeans, and wheat. Interestingly, NASS (2018a) included hay as a field crop as 
opposed to how Wright and Wimberly (2013), Lark et al. (2015), and Wright et al. (2017) classified hay 
as non-cropland in their studies. As a result, the findings presented in this report will consider that hay is 
unique because it is defined differently by NASS (2018a) and the reviewed research. NASS (2018a) 
reported a net increase to field crop totals of only 38,000 acres without including hay as cropland in 
Iowa from 2008-2012. These NASS (2018a) totals showed that corn increased by 900,000 acres; 
however, these corn acres predominately replaced the decreasing acreages in other field crops (mostly 
alfalfa and soybeans). It is also worth mentioning again that U.S. corn acres (and in Iowa) were at a 
relatively low mark in 2008, so any comparison with this low mark as the base year would misrepresent 
any change. If 2007 would have been used as the base year any temporal comparison would have been 
considerably different since the national and Iowa corn acres were much higher for that year. With this 
said, even when compared with Lark et al. (2015) totals in Iowa from 2008-2012, this net increase was 
only approximately only 14 percent of the total net conversion that was reported by these researchers. 
 Analysis of the NASS (2018a) field crop totals at the agricultural district level revealed a similar 
spatial distribution of change as identified by Lark et al. (2015), but the magnitude of change identified 
by NASS from 2008-2012 was far less (Figures 4 and 5). Furthermore, Lark et al. (2015) identified south 
central Iowa as one of the areas with significant LCLUC; however, due to the drastic difference in total 
net change, it was suspected that the CDL was potentially having classification errors among certain 
crops/non-crops, and that this misclassification could be occurring at different levels within Iowa.  
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Fig. 4: All field crop changes in Iowa by agricultural district from 2008-2012 (NASS 2018a). Negative values indicate loss of 
planted cropland and positive values indicate gains of planted cropland. The north central and south central agricultural 
districts had the highest decrease (-45,807 acres) and increase (58,145 acres), respectively. Total net change (without hay) 
based on NASS (2018a) totals was 38,000 acres for Iowa from 2008-2012. 

 

 
Fig. 5: A generalized version of the Lark et al. (2015) map of percent of landscape that was converted to and from cropland 
from 2008-2012 (blue to green represents reversion, gray represents no change, and yellow to red represents conversion). In 
this map, Iowa’s agricultural districts are overlaid for a reference to compare to the NASS (2018a) field crop changes in Iowa by 
agricultural districts in Figure 5. Total net conversion reported by Lark et al. (2015) was 263,468 acres. 
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Testing of the CDL was conducted on two distinctly different agricultural districts (north central 
and south central) in Iowa from 2008-2012. These two agricultural districts were drastically dissimilar in 
their conversion and reversion totals, and they are physiographically different landscapes as well. The 
tests conducted were simple area calculations of the CDL by crop type via pixel counting method in each 
agricultural district, which were then compared to the NASS (2018a) totals for the corresponding crop 
type (Table 1).  

Results from the 2008 comparison revealed that the CDL was analogous with the NASS (2018a) 
totals for corn (94.5 percent of estimated NASS total) and soybeans (96.1 percent of estimated NASS 
total) in the north central agricultural district. However, the south central agricultural district displayed 
less comparable totals for soybeans (81.2 percent of estimated NASS total) and for corn (83.3 percent of 
estimated NASS total). Hay and alfalfa were grossly underestimated by the 2008 CDL in both the north 
central and south central districts. Of interest, the total difference in acreage for corn and soybeans was 
similar in both the north central and south central, but the total acreage difference for alfalfa was 
significantly higher in south central Iowa (just over 175,000 acres) for 2008. 
 
Table 1: Comparison of CDL acres vs. NASS acres for specific crop types in north central and south central Iowa from 2008-2012. 

 
*Columns labeled “Difference XXXX” are the NASS totals minus the CDL totals. Columns labeled “Percent XXXX” are the CDL 
totals divided by the NASS totals. The final column labeled “Change in Percent” is “Percent 2012” minus “Percent 2008”. 
** Only alfalfa, corn, hay, and soybeans were used in this table (oats and wheat were omitted) because these categories had 
entries for all agricultural district for both years. These four crops accounted for over 99 percent of the NASS field crop totals. 

  
When 2008 was compared with 2012, the north central district had no change at estimating 

soybeans and corn (95.3 and 94.2 percent, respectively). The south central district saw a significant 
improvement in the CDL estimates at 99.7 percent for soybeans (2008 was at 81.2 percent) and 99.4 
percent for corn (2008 was at 83.3 percent). Hay and alfalfa saw increases in CDL estimates in the north 
central, but were still less than 50 percent of the NASS (2018a) totals. Furthermore, the south central 
district saw a drastic overestimation in hay, which was due to the 2008 CDL classification of 
grass/pasture changing to hay in the 2012 CDL (463,959 acres, approximately 90 percent, of 2008 
grass/pasture was classified as hay in 2012). This is a prime example of the CDL’s inability to 
differentiate between grassland types (e.g., native prairie, Conservation Reserve Program, grass hay, 
grass pasture, fallow/idle grasslands, etc.). Overall, this comparison between 2008 and 2012 CDLs and 
NASS (2018a) totals identified that the CDL improved over time at estimating certain field crop totals. 
However, this analysis also raised concerns surrounding the CDL’s ability as an input data set for 
measuring land use change between years since certain land types were poorly classified. 

Based on the 2008 Iowa CDL accuracy matrix (NASS 2018b) at the state-level, alfalfa was mostly 
confused with non-crop classes, such as hay and grass/pasture (lesser amounts of confusion with corn, 
soybeans, and oats). Corn and soybeans were predominantly confused with each other, and to a lesser 

North 

Central
CDL 2008 NASS 2008

Difference 

2008

Percent 

2008
CDL 2012 NASS 2012

Difference 

2012

Percent 

2012

Change in 

Percent

Alfalfa 9,673 46,000 36,327 21.0 11,790 26,100 14,310 45.2 24.1

Corn 1,849,324 1,957,000 107,676 94.5 1,902,721 2,020,000 117,279 94.2 -0.3

Hay 599 10,200 9,601 5.9 3,275 9,100 5,825 36.0 30.1

Soybeans 1,210,203 1,259,000 48,797 96.1 1,117,177 1,172,000 54,823 95.3 -0.8

South 

Central

Alfalfa 49,528 226,000 176,472 21.9 63,864 156,800 92,936 40.7 18.8

Corn 422,510 507,000 84,490 83.3 578,291 582,000 3,709 99.4 16.0

Hay 16,248 146,100 129,852 11.1 515,778 144,900 -370,878 356.0 344.8

Soybeans 463,517 571,000 107,483 81.2 616,330 618,000 1,670 99.7 18.6



15 
 

degree with non-crop classes, such as hay, grass/pasture, and fallow/idle lands. The CDL and NASS 
comparison would indicate that a similar pattern may have occurred in the north central district, but a 
different and intriguing phenomenon was suggested in the south central district of Iowa.  

The diverse physiography between the north central and south central districts in Iowa results in 
uniquely different crop field shapes in these two areas (Figure 6). These districts are within two distinct 
Major Land Resource Areas. The majority of crop fields in north central Iowa are large rectangular or 
square—shapes with well-defined boundaries that do not have much, if any, intermixing with other land 
use types. Whereas, south central Iowa has many relatively small irregular shaped crop fields that are 
overwhelmingly intermixed with other land use types. 
 

 
Fig. 6: Example from the 2012 CDL of corn (yellow) and soybean (dark green) fields in north central Iowa (left) and south central 
Iowa (right). North central is blocked crop fields on flatter terrain and the overwhelming majority of the land use, while the 
south central crop fields are disjointed and irregularly shaped, with a scattered pattern across more undulating terrain. 

  
In the north central district, the 2008 landscape was dominated by corn and soybean, with 

minimal amounts of alfalfa and other non-crops, such as hay, grass/pasture or fallow/idle lands. Due to 
this, most misclassification that was occurring in this district was between corn and soybeans being 
confused with each other (Figure 7). This misclassification was identifiable by the presence of corn pixels 
speckled throughout a well-defined soybean field or soybean pixels speckled throughout a well-defined 
corn field. 
 

 
Fig. 7: Examples in the north central district of corn (yellow) and soybeans (dark green) being confused with each other in the 
2008 CDL. Left images highlights corn pixels within soybean fields and right images highlights soybean pixels within corn fields. 
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However, in the south central district, the 2008 landscape was dominated by grass/pasture (just over 1.6 
million acres). There were lesser amounts of corn and soybeans, and an increased amount of alfalfa 
compared to the north central district. Visual assessment suggested that much of the CDL 
misclassification in the south central district was between alfalfa (and also corn and soybean) being 
confused with grass/pasture or hay due to their lower estimated percentages when compared to NASS 
(2018a) totals in this district (Figure 8). This misclassification was evident by the fragmentation and 
speckling of crop or non-crop classes intermixed or in close proximity to one another.  
 

 
Fig. 8: Examples in the south central district of alfalfa (pink), and also some corn (yellow) and soybeans (dark green), confused 
with non-crop grass/pasture in the 2008 CDL. This confusion is noticeable via the fragmentation and speckling of these crop 
classes within non-crop classes. 

 
Figure 9 exemplifies the implications of comparative analysis using the 2008 and 2012 CDLs. The 

dark and light blue boxes in the satellite imagery highlight areas that contained cultivated lands in 2008. 
These areas were managed croplands that showed the evolution of cultivated lands over a growing 
season. These cultivated lands and their associated management practices were represented by: (1) the 
indication of high biomass on June 14, then the lack of biomass on June 30, and finally high biomass 
again over the course of the other images (dark blue boxes in Figure 10) or (2) the growth of biomass 
throughout the growing season and then the loss of biomass by the end of the temporal sequence by 
September 27 (light blue box in Figure 10). However, the 2008 CDL did not fully capture these croplands 
since most of these areas were misclassified as grass/pasture. Furthermore, the 2012 CDL had these 
areas classified as cultivated croplands, so a comparison with the 2008 CDL would indicate that these 
areas changed from non-cropland to cropland. However, this change from non-cropland to cropland 
would actually be false change.  

This is only one detailed and randomly selected visual assessment of the implications of LCLUC 
analysis using an early-year CDL (like the 2008 CDL). Moreover, it is suspected that this is a common 
theme in agriculturally marginal areas, such as southern Iowa where croplands can be misclassified as 
grass/pasture, hay, or other grassland types.  
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Fig. 9: Images 1-4 are color-infrared Landsat 5 TM. Images 5-6 are the 2008 and 2012 CDLs. Dark and light blue boxes highlight 
several examples of areas for misclassification comparison (all fields in these boxes are greater than 30 acres). The temporal 
sequence of Landsat 5 TM imagery shows the evolution of managed croplands over the growing season within the dark and 
light blue boxes. 

 
Further visual assessments of a later-year CDL product in southern Iowa showed that 

misclassification was still an issue. The 2017 CDL was compared with one randomly selected panel of 
2017 NAIP imagery from July 1, 2017 (Figure 10). The CDL was vectorized and turned completely 
transparent with a red outline to be able to see the NAIP imagery land type(s) that corresponded with 
the CDL classifications. Comparisons of the 2017 CDL with NAIP imagery showed: (1) general 
misclassification; (2) certain land classes were omitted due to how 30-meter pixels handle discrete 
classification; and (3) multiple land classifications could occur in only one known land class (Figures 11-
14). This small visual assessment was done to show that even in more recent years the CDL still has 
issues with classification in these marginal areas in southern Iowa. Even though the CDL has committed 
to increasing accuracy over time (due to improved satellites, ancillary data for testing and validating, and 
classification modeling), the 2017 CDL was still showing confusion in the classification product.  
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Fig. 10: 2017 NAIP Image (left) and 2017 CDL (right) used for comparison. 

 
 

 
Fig. 11: 30-meter pixels omitted grassland from the 2017 CDL. 
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Fig. 12: General misclassification of water as deciduous forest and grass/pasture. 

 
 

 
Fig. 13: General misclassification of hay and grass/pasture as deciduous forest. 
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Fig. 14: Multiple classification types (crop and non-crop) in a hay field (identifiable by the presence of hay bales). 

 
 In summary, the providers of the CDL (and the NLCD) have maintained that accuracy in mapping 
land cover has been increasing over time. This assessment of the 2008 and 2012 CDLs showed 
improvements over time, but also indicated that there were discrepancies in cropland totals when 
compared with NASS (2018a) totals in Iowa. Furthermore, analyses of how the CDL mapped certain land 
classifications showed that separate agricultural districts in Iowa displayed different misclassification 
issues. The implications of comparing an early-year CDL product (such as 2008) with a later CDL product 
(such as 2012) that displayed better classification capabilities revealed that false change is present in 
these analyses. This is especially true in marginal areas, such as southern Iowa, where Lark et al. (2015) 
and Wright et al. (2017) indicated high conversion. Lastly, this report does not suggest that conversion 
or reversion was not occurring across the United States, but rather the magnitude of conversion 
reported by Lark et al. (2015) and Wright et al. (2017) is almost certainly overestimated due to 
misclassifications representing false change in certain areas. 
 

Conclusion and Recommendations 
 When considering the research by Wright and Wimberly (2013), Lark et al. (2015), and Wright et 
al. (2017) as one continuum, it is evident that certain challenges and successes have presented 
themselves in gaining a better understanding of using the CDL to investigate LCLUC. Moreover, there are 
still vital issues and challenges that remain and, as with any body of research, should be further 
investigated based on data input and methodological improvements. Based on the review of these 
studies (Wright and Wimberly 2013; Lark et al. 2015; Wright et al. 2017), it would be beneficial to 
highlight the major concerns with the data sources and methods presented in this report. 

First and foremost, there were fundamental data issues that call into question the findings from 
the studies. The CDL, which was the primary data set used in all the reviewed studies, has several 
shortcomings, including the inability to differentiate between grassland types (e.g., native prairie, 
Conservation Reserve Program, grass hay, grass pasture and fallow/idle grasslands). As mentioned 
earlier in this document, even NASS (2018b) recommends that researchers use the NLCD for all non-

Hay Bales 
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agricultural land cover studies. Due to these critical accuracy issues with the CDL, a comparative analysis 
using a less-accurate 2008 CDL as the base year and comparing it with more-accurate 2012 CDL will 
result in false change. This was identified as being the most problematic in marginal areas, such as south 
central Iowa, where misclassification was likely to occur based on smaller crop field sizes, irregularly 
shaped fields, and closer proximity to other non-crop land uses (e.g., grasslands, hay, CRP, pasture, etc.). 

Additionally, while the reviewed studies presented interesting approaches to estimating LCLUC, 
critical challenges remain in using these approaches. The most significant challenge was most of these 
approaches lacked accuracy assessments, which did not give the end-user a high-level of confidence in 
the resulting LCLUC mapping. When Wright et al. (2017) did include an accuracy assessment, it lacked a 
full discussion of the agreement/disagreement matrix that was only presented in a supplemental report. 
A detailed discussion of the reference process and the agreement/disagreement matrix would fully 
disclose the true utility of the analysis and give the end-user a higher level of confidence in the resulting 
LCLUC analysis. 

Lastly, Wright and Wimberly (2013), Lark et al. (2015), and Wright et al. (2017) insinuated that 

cropland expansion was attributable to the RFS program. However, this assumption was not quantified 

and even the EPA (2018) warned about the issues with attributing causation. When one considers the 

inaccuracy in the CDL and the methodological issues in the reviewed studies, this jump to causation has 

no scientific merit. 

Going forward, with regard to the proposed objectives of the NLCD 2016 products (Yang et al. 
2018), it may be a of interest to consider how the NLCD could be used to conduct LCLUC in a more 
robust manner (with the CDL as a supporting data set), especially since the reviewed researchers 
(Wright and Wimberly 2013; Lark et al. 2015; Wright et al. 2017) have all aggregated CDL classes in an 
attempt to reduce error. Furthermore, the development of a consensus among researchers regarding 
best practices (e.g., how to define and categorize croplands) have the potential to facilitate more 
accurate longitudinal studies. However, given the serious shortcomings of the reviewed studies, policy 
makers would be advised to remain skeptical of the findings to date regarding LCLUC. 
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Executive Summary 

 

The RFS2 has resulted in aggregate GHG emissions reductions from the use of biofuels, which 

exceed the original projections from the final Rule for the first 13 years of its implementation. 

The RFS2 has resulted in significant GHG reductions, with cumulative CO2 savings of 980 

million metric tonnes over the period of implementation to date. The GHG reductions are due to 

the greater than expected savings from ethanol and other biofuels. These emissions savings occur 

even though cellulosic biofuels have not met the RFS2 production targets. In addition, EPA 

underestimated the petroleum baseline in the Rule. Studies by Life Cycle Associates and the 

Carnegie Institute have shown that the GHG emissions from U.S. petroleum are higher than the 

EPA calculated in 2005 (Boland, 2014; Gordon, 2012, 2015). This study calculates the annual 

U.S. petroleum GHG intensity based on the changing trends in feedstock availability over time 

and determines the GHG savings calculated from the aggregate mix of renewable fuels.  The 

GHG intensity for each category of ethanol plant and biodiesel feedstock is estimated for the 

resource mix over the past 13 years and combined to determine an aggregate estimate.  Figure 1 

shows the total emissions reductions from the RFS2 compared with the GHG reductions 

projected from the rule. 

 

 
 

Figure 1. GHG Emissions Reductions due to the RFS2.
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1. Introduction 

This study builds upon the 2014 Carbon Intensity of Marginal Petroleum and Corn Ethanol Fuels 

report and subsequent updates (Boland, 2014) (Boland 2015, Unnasch 2019)) released by Life 

Cycle Associates under contract to the Renewable Fuels Association. The Marginal Emissions 

report examined the trends in the greenhouse gas (GHG) emissions, termed Carbon Intensity (CI) 

of U.S. petroleum and corn ethanol transportation fuels. The CI is measured in grams of carbon 

dioxide emitted per megajoule of fuel (g CO2 e/MJ). This work includes all renewable fuels sold 

under the RFS2 and their corresponding CI values. 

 

The U.S. Renewable Fuel Standard (RFS2) requires the addition of 36 billion gallons of 

renewable transportation fuels to the U.S. slate by 2022. The RFS2 established mandatory GHG 

emission thresholds for renewable fuel categories based on reductions from an established 2005 

petroleum baseline. Within the total volume requirement, RFS2 establishes separate annual 

volumes for cellulosic biofuels, biomass-based diesel, advanced biofuels, and renewable fuels. 

Figure 2 illustrates the RFS2 volume requirements per fuel category. To comply with the 

standard, obligated parties must sell their annual share (as calculated by EPA) within each 

category.  

 

 
Figure 2. RFS2 renewable fuel volume requirements for the United States. 

 

The 2005 petroleum baseline developed by EPA is based on the aggregate emissions from the 

production of petroleum fuels consumed in the U.S. during 2005. The methodology and 

assumptions for the petroleum baseline are contained in the EPA Regulatory Impact Analysis 
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(EPA, 2010). The baseline remains constant throughout the statutory timeframe of the RFS2 

(2005 to 2022). However, the mix of crude slates used to develop the baseline has changed since 

2005, and the advent of new crude extraction and processing technologies has raised the 

aggregate CI of petroleum fuels above the 2005 baseline. Furthermore, the baseline refining 

emissions were underestimated and have since been revised in LCA models (ANL, 2014; El-

houjeiri, 2012). The 2014 Marginal Emissions study (Boland, 2014) re-examines the mix of 

crude slates and U.S. consumption trends to develop the annual aggregate U.S. petroleum CI. 

The annual aggregate CI provides a more accurate estimate of the aggregate U.S. petroleum CI. 

Figure 3 shows the weighted carbon intensities of petroleum fuels consumed in the U.S. 

alongside the EPA 2005 baseline. This revised estimate results in an aggregate petroleum CI that 

is higher than the 2005 EPA average gasoline baseline of 93.08 g CO2 e/MJ. The median CI of 

aggregate U.S. petroleum gasoline is 96.8 g CO2 e/MJ.  

 

Figure 3. Weighted carbon intensity (g CO2 e/MJ) of petroleum fuels consumed in the U.S. 

1.1 RFS Renewable Fuel Categories, Production Volumes and RINS Generated 

Table 1 shows the U.S. renewable fuel categories, the fuel type and the typical feedstocks used to 

produce each fuel. Also shown is the RIN D Code. The RIN code is the Renewable Identification 

Number (RIN), used to track fuel production and sales. Each type of renewable fuel generates a 

RIN when produced. Each D code applies to a specific RIN category. 
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EPA reports fuels sold by D-code type, which are further categorized as shown in Table 1. EIA 

reports the types of feedstocks used in biodiesel production.1  This study matched the 

fuel/feedstock combinations with fuel volumes. Some fuel categories achieve GHG reductions 

that are consistent with the 50% and 60% GHG reductions in the RFS2, while other fuels such as 

corn oil biodiesel achieve even lower GHG reductions than the RFS requirements. The CI for 

each feedstock and fuel is matching in the following analysis. 

 

Table 1. U.S. Renewable Fuel Categories, Fuel Type, Feedstock Source and RIN D-Code 

RIN 

code Fuel Category Fuel Type Feedstock 

D6 Renewable Fuel Ethanol Corn, Grain Sorghum 

D6 Renewable Fuel Biodiesel Palm Oil 

D6 Renewable Fuel NERDa (EV 1.7) Palm Oil 

D5 Advanced Biofuel Ethanol Grain Sorghum, Sugarcane, Beverage Waste 

D5 Advanced Biofuel Biogas Landfill, Wastewater Treatment 

D5 Advanced Biofuel NERD (EV 1.6) Tallow, Used Cooking Oils, Soybean, Distillers’ 

Corn & Sorghum Oil, Food Waste 

D5 Advanced Biofuel NERD (EV 1.7) Tallow, Used Cooking Oils, Soybean, Distillers’ 

corn & sorghum oil, Food waste 

D5 Advanced Biofuel Bio-Naphtha Used Cooking Oils, Distillers’ Corn & Sorghum 

Oil 

D4 Biomass-Based Diesel Biodiesel Soybean, Canola/Rapeseed, Tallow, Distillers’ 

Corn & Sorghum Oil 

D4 Biomass-Based Diesel NERD (EV 1.5) Tallow, Soybean, Distillers’ Corn & Sorghum Oil 

D4 Biomass-Based Diesel NERD (EV 1.6) Tallow, Soybean, Distillers’ Corn & Sorghum Oil 

D4 Biomass-Based Diesel NERD (EV 1.7) Tallow, Soybean, Distillers’ Corn & Sorghum Oil 

D3 Cellulosic Biofuel Ethanol Corn Kernel Fiber, Biomass Stover 

D3 Cellulosic Biofuel RCNG Landfill, Wastewater Treatment, Animal Waste 

D3 Cellulosic Biofuel RLNG Landfill, Wastewater Treatment, Animal Waste 

D3 Cellulosic Biofuel Renewable Gasoline Forest Waste, Crop Residue, Food Waste 

D7 Cellulosic Diesel NERD (EV 1.7) Forest Waste, Crop Residue, Food Waste 
aNERD = Non-Ester Renewable Diesel 

 

Table 2 shows the U.S. renewable fuel volumes generated (million gallons of fuel) from 2008 - 

2020 (i.e., the period of RFS2 implementation). The study also evaluates the effect of the RFS 

extended through 2020 with fuel volumes shown as indicated.  

 
1 EPA categorizes renewable diesel by equivalence value EV. The equivalence value represents the ratio of heating 

value of a biofuel to the heating value of a gallon of denatured ethanol. NERD EVs may vary with data submitted by 

different fuel developers with petitions to EPA. 
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The GHG emissions for each category of fuel in Table 2 are calculated based on estimates of the 

composite carbon intensity (CI) for each of the fuels.  The CI varies among all of the fuel 

technologies.  Grain-based ethanol production uses a range of process fuels.  Ethanol plants also 

produce distillers’ grains, corn oil, and other food and feed products. Ethanol also is a higher-

octane blending component which reduces the GHG emissions associated with crude oil refining.  

 

Note that the RIN data is categorized by the Equivalence Value (EV) which corresponds to the 

different in energy content of diesel, naphtha, and jet fuel relative to ethanol which are typically 

associated with the production of non-ester renewable diesel (NERD) fuels as well as pyrolysis-

based fuels.  Biodiesel and NERD also use a range of feedstocks including vegetable oils and 

waste oils.  The CI depends on the mix of these feedstocks. 

 

Many sources of biogas generate RINs under the RFS including landfills as well as food waste 

and manure anaerobic digesters. The latter source of renewable natural gas (RNG) result in the 

avoidance of methane emissions, which further reduce GHG emissions.  RNG is a feedstock for 

compressed natural gas (CNG) and liquefied natural gas (LNG) as well as a process fuel for 

some ethanol plants. 
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Table 2. U.S. Renewable Fuel Volumes used in Transportation2 

D-

code 
Fuel Type   

  

Fuel Volumes (Million Gallons) a 

  2008 2010 2012 2014 2016 2018 2020b 2025 

6 Ethanol 9,309 13,298 12,987 14,022 14,725 14,967 12,566 15,310 

6 Biodiesel 0 0 1 53 113 0 0 0 

6 NERD (EV 1.7) 0 0 0 151 166 107 76 80 

5 Ethanol 530 16 603 90 61 102 185 650 

5 Biogas 0 0 3 20 0 1 0 10 

5 NERD (EV 1.6) 0 5 2 0 0 0 0 0 

5 NERD (EV 1.7) 0 3 10 9 5 24 38 107 

5 Bio-Naphtha 0 0 0 12 18 21 21 40 

4 Biodiesel 678 343 1,056 1,436 2,194 2,030 1,998 2100 

4 NERD (EV 1.5) 0 0 1 0 0 0 0 0 

4 NERD (EV 1.6) 0 0 9 7 0 0 5 14 

4 NERD (EV 1.7) 0 1 80 320 421 485 824 1,400 

3 Ethanol 0 0 0 1 4 8 30 102 

3 RCNG 0 0 0 15 117 222 344 443 

3 RLNG 0 0 0 17 72 83 83 165 

3 Renewable Gasoline 0 0 0 0 0 0 0 0 

7 NERD (EV 1.7) 0 0 0 0 1 0 0 0 

 Anhydrous Ethanol 9,642 13,047 13,318 13,831 14,494 14,776 12,525 15,741 

 Denaturant 197 266 272 282 296 302 256 321 

 FAME Biodiesel 678 343 1,057 1,501 2,325 2,052 2,019 2,140 

 Total N-E RD 0 9 103 488 591 615 943 1,587 

 Total Biogas 0 0 3 53 189 304 427 618 

  Total 10,517 13,665 14,753 16,155 17,895 18,049 16,169 20,407 
aFuel volumes correspond to total net generation EPA RIN data divided by the fuel’s equivalence factor. 
b2020 is the assumed 12-month production total of biofuels based on the 9 months (January – September 2020) data available.

 
2 Fuel volume is derived from the RIN generation data provided by EMTS. 

  https://www.epa.gov/fuels-registration-reporting-and-compliance-help/rins-generated-transactions 
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2. Land Use Change  

The Land Use Change (LUC) reflects the net change in carbon stocks associated with expansion 

of crop production as well as indirect effects that are induced by the demand for feedstocks. LUC 

is an important, but controversial, element of a biofuel’s life cycle impact, including the direct 

emissions associated with land conversion to agricultural fields and indirect emissions associated 

with economic impacts induced by the change to land use.  

 

EPA, ARB and ANL have developed estimates for LUC estimates from biofuels production. 

These are summarized in Table 3. The development of LUC estimates is discussed in detail in 

the 2014 Marginal Emissions report (Boland, 2014). This analysis uses the best estimate for each 

biofuel category shown here to calculate the total emissions from the production of that biofuel.  

 

Table 3. LUC Emissions Estimates from Biofuels 

Policy 

Corn 

EtOH 

Sorghum 

Ethanol 

Corn 

Stover 

Sugarcane 

Ethanol 

Soybean 

BD/RD 

Canola 

BD/RD 

Palm 

BD 

Tallow 

BD/RD 

Corn 

BD 

 LUC (g CO2e/MJ) 

2009 ARB 30 n/a 0 46 62 31 n/a 0 0 

2010 EPA 28 13.1 -1.3 5.41 18.3 ~15 48.2 0 0 

2014 ARB 19.6 19.4 0 11.8 29.1 14.5 71.4 0 0 

ANL/CCLUB 7.6 n/a -1.1 n/a n/a n/a n/a 0 0 

Best Estimate 7.4 7.6 -1.1 11.8 18.3a 14.5 48.2 0 0b 
a The ILUC associated with soy BD is consistent with the crop yield per acre.  If ILUC per acre of corn is 

the same as ILUC per acre of soybeans, then ILUC for soybean-based BD or RD is about twice that of 

corn ethanol depending upon the displacement value of co-products from ethanol and soybean meal. The 

RFS and LCFS values for soybean and canola ILUC are used as a conservative assumption. The ILUC 

values for BD and RD should differ slightly depending on oil to fuel yield but these values are assumed 

invariant with biomass-based diesel type. 
b Several approaches are available to assigning ILUC to ethanol and corn oil used for biodiesel 

production. The California ARB assigns all of the ILUC to ethanol and this approach is followed here.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7  |   GHG Reductions from the RFS2  Copyright © 2021  
  

3. Carbon Intensity of Corn Ethanol and Biofuels production 

Ethanol represents the largest volume of renewable fuel produced and consumed in the U.S. The 

Marginal Emissions report (Boland, 2014) developed aggregated weighted CI estimates for the 

corn ethanol produced in the U.S. based on the installed capacity shown in Table 4. The installed 

capacity is based on the production cases described in the EPA Regulatory Impact Analysis 

(EPA, 2010). The capacity per plant type (including projections for capacity expansions) was 

used to model the trend in corn ethanol production for RFS operational years of 2008 through to 

2020.  

 

Important developments in the mix of corn ethanol technology include the following: 

• Rapid adoption of corn oil extraction for dry mill plants (95% by 2020) 

• Introduction of corn fiber/kernel fiber/stover in 38 plants by 20203  

• Growth in the use of low CI biogas as process fuel 

• Elimination of coal as fuel for dry mill ethanol plants 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3 While EPA has not approved corn fiber petitions, 38 pathways have been approved by the California ARB.  This 

technology results in about a 3% increase in ethanol production capacity.  The adoption rate should grow to 50 

plants by 2025. 
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Table 4. Corn Ethanol Production Capacity and Technology Aggregation 

Plant Energy Source,  Capacity (Million Gallons per Year) 

Aggregated dataa,b 2008 2010 2012 2014 2016 2018 2020 

Wet Mill, Coal 1,888 1,877 1,893 1,474 1318 1162 745 

Wet Mill, NG 107 328 473 854 1,100 1312 538 

Dry Mill, Coal 54 36 19 15 0 0 0 

Dry Mill, NG, DDGSc 2,919 2,366 1,812 1,613 1,600 500 522 

Dry Mill, NG, WDGSc 1,442 1,178 913 903 900 230 183 

Dry mill, corn oil DDGS 1,946 4,617 5,471 5,336 7,000 8,500 9,917 

Dry mill, corn oil, WDGS 961 2,145 2,728 2,589 2,700 3,000 3,484 

Dry Mill, CRF/green cornd 325 361 397 461 700 800 965 

Dry Mill, Biogas/Biomasse 195 250 305 360 415 470 525 

Corn Stover/Fiberf 0 0 0 0.73 4 10 55 

Total Corn Ethanol 9,837 13,158 14,011 13,606 15,737 15,984 16,883 
a  EPA Regulatory Impact Analysis (RIA)for the final Transport Rule.(EPA, 2009)  

b Projections in consultation with industry experts.  
c The rapid adoption of corn or extraction in dry mill ethanol plants has penetrated most of the market due to the 

improvement in energy consumption, reduction in GHG emissions, and production of corn oil. Total corn oil 

biodiesel from EIA data corresponds to 0.13 lb of corn oil per gallon of ethanol, which is about half of the potential 

yield.  The balance of corn oil is used as animal feed. 
d Corn replacement feed (CRF) and low GHG corn farming can reduce GHG emissions by producing additional co-

product credit and implementing low impact farming practices. The introduction of lower emission corn is projected 

based on projections from industry analysts. (ACE, 2018). 

e 6 ethanol plants with biogas or biomass process fuel have approved LCFS pathways.   
f 38 corn fiber/stover/kernel fiber ethanol pathways were approved under CA LCFS in 2020. Assume corn fiber 

ethanol is an additional 3% of plant capacity. 

 

Other emission reduction strategies include the use of corn replacement feed from stover and 

improved farm practices. Practices such as no till and precision farming have reduced GHG 

emissions from corn and these technologies are expanding. 

 

Table 5 shows the representative CI of ethanol produced at each type of production facility 

described in the RIA. The CI reflects the ILUC values from the latest GREET model (ANL 

2020).  
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Table 5. Carbon Intensity of Corn Ethanol 

 Carbon Intensity (g CO2 e/MJ)  

 Corn Ethanol Production Type 2008 a 2015 a 2018 a      2020b 

Wet Mill, Coal 97.35 93.07 90.44 88.69 

Wet Mill, NG 77.35 73.34 70.84 69.17 

Dry Mill, Coal 67.61 63.38 N/A N/A 

Dry Mill, Average 64.27 56.04 54.55 54.11 

Dry Mill, NG, DDGS 60.80 58.72 58.72 58.67 

Dry Mill, NG, WDGS 54.38 48.78 48.78 49.88 

Dry mill, corn oil DDGS 63.82 58.26 57.35 56.74 

Dry mill, corn oil WDGS 54.92 49.79 49.79 49.78 

Dry Mill NG, CRF 49.37 41.14 39.65 38.36 

Dry Mill, Biomass/Biogas 38.00 34.14 30.00 28.15 
a  CI values from 2018 RFS Update (Unnasch 2018). CI of corn, electricity mix, and other life cycle factors have 

changed since then. 
b Based on GREET1_2020 model. Data from GREET1_2020, provided energy inputs data to these calculations.  

Data from California LCFS pathways provide insight to corn fiber and biomass based – based pathways. GREET 

CCLUB estimates for ILUC included in this table.  

 

Similar to ethanol, estimates for the production of bio- and renewable diesel were based on the 

feedstock use per fuel. The U.S. Energy Information Agency (EIA) provides inputs on the U.S. 

feedstock inputs into biodiesel production (EIA, 2015). The production volumes for modelled for 

the years 2008 through to 2020. The biodiesel feedstock production volumes are shown in 

Table 6.  

 

Table 6. Feedstocks for U.S. Biodiesel Production 

Product 2008 2010 2012 2014 2016 2018 2020 

Total BDa 678 343 1,056 1,501 2,325 2,052 2,019 

  Canola oil 59 30 91 130 133 149 126 

  Corn oil 72 36 111 158 153 245 176 

  Palm oil 16 8 26 37 56 0 0 

  Soybean oil 360 182 561 797 1,619 1,212 1452 

  Tallow/Poultry 42 21 65 92 133 151 118 

  UCO 130 66 202 288 231 295 147 
aTotal BD volumes based on EPA-reported RINs.  Split among oil types based on EIA data. 

 

Similar estimates for the renewable diesel feedstocks were developed from the study of 

hydrogenation derived renewable diesel as a renewable fuel option in North America (Lambert, 

2012). The biogas feedstocks are primarily landfill gas and wastewater treatment facility biogas. 

Biogas from anaerobic digestion of food waste and manure is also a source of biogas for CNG.  
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Table 7 shows the volumetric weighted carbon intensity estimates (developed by weighting the 

production capacity with the CI for each technology/feedstock) for the each of the biofuel 

categories included in the RFS2. The table also shows the assumed minimum reduction threshold 

CI for the RFS2 for each fuel type.  

 

More recent studies of petroleum GHG emissions also indicate that the estimates for the original 

2005 petroleum baseline in fact somewhat higher (EIA, 2013; Elgowainy, 2014; Unnasch, 2009). 

3.1 Fuel Impacts 

In addition to displacing higher GHG fossil fuels, alternative fuels have several other impacts on 

the transportation system.  High octane ethanol allows to produce less energy intense 

hydrocarbon blending components and results in higher efficiency in high octane fuels.  

Renewable diesel results in an ultra-low sulfur fuel with a high cetane number that helps refiners 

meeting fuel specifications.  These factors contribute to the overall GHG benefit of renewable 

fuels. 

 

Fuel Efficiency and Octane 

Reformulated gasoline is produced by blending a hydrocarbon component for oxygenate 

blending (BOB) with ethanol.  To produce regular gasoline with an Anti-Knock Index (AKI) 

(R+M)/2 octane of 87 an 84 octane BOB is blended with ethanol4. Refiners take advantage of 

ethanol’s octane produces a BOB with few high-octane components.  Typically, the reformer is 

operated at a lower severity or less blending from alkylation units contribute to the octane of 

gasoline (Hirshfeld, 2015; Kwasniewski, 2015). Kwasniewski presents the different scenarios on 

a GHG intensity basis with a difference of 1 g CO2e/MJ of gasoline between E10 and zero 

ethanol blending cases.  The result is consistent with the energy intensity in a paper from 

Argonne National Laboratory (Elgowainy, 2014)5. 

 
4 The AKI for ethanol is 99.3 (Pearson, 2015) but its blending octane number at 10% level is 114. 
5 For example, alkylation units require 1.2 MJ input per MJ gasoline compared with 1.03 MJ/MJ for crude 

distillation. Displacing the higher energy intensity component with ethanol reduces the CI of the BOB. 
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Table 7. Carbon Intensity Estimates of All Biofuels and RFS GHG Reduction Threshold (g CO2e/MJ) 

Fuel Threshold 2008 2010 2012 2014 2016 2018 2020a 2025 

Ethanol, D6 74.5 66.3 63.6 62.0 58.6 56.5 55.1 53.2 53.2 

Biodiesel, D6 74.5 71.8 71.5 71.5 71.5 90.0 90.0 90.0 90.0 

Non-Ester RD, D6 74.5 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 

Ethanol, D5 46.5 41.9 42.1 42.1 42.2 39.6 39.6 38.0 38.0 

Biogas, D5 46.5 25.6 24.4 24.4 23.8 23.3 23.3 21.0 21.0 

Non-Ester RD (EV 1.6) 46.5 46.4 46.4 46.5 46.2 46.2 46.2 44.4 44.4 

Non-Ester RD (EV 1.7) 46.5 46.4 46.4 46.5 46.2 45.9 45.9 43.8 43.8 

Bio-Naphtha  46.5 46.4 46.4 46.5 46.2 45.9 45.9 33.1 33.1 

Biodiesel  46.5 42.5 42.1 42.3 42.2 41.9 41.9 38.5 38.5 

Non-Ester RD (EV 1.5)  46.5 35.0 35.0 35.0 35.0 35.0 35.0 34.8 34.8 

Non-Ester RD (EV 1.6)  46.5 35.0 35.0 35.0 35.0 35.0 35.0 34.8 34.8 

Non-Ester RD (EV 1.7) 

Soy/Tallow 
46.5 35.0 35.0 35.0 35.0 35.0 35.0 34.8 34.8 

Ethanol, Cellulosic 37.2 37.2 37.4 37.8 38.4 33.5 30.0 28.5 28.5 

RCNGb 37.2 25.6 24.4 24.4 23.8 23.3 23.3 16.9 12.0 

RLNG 37.2 29.6 28.3 28.3 27.6 27.0 27.0 20.6 15.7 

Renewable Gasoline 37.2 28.0 27.0 27.0 26.6 26.1 26.1 22.6 22.6 

Non-Ester RD, D3 37.2 28.0 27.0 27.0 26.6 26.1 26.1 26.1 26.1 

US Electricity  204.6 182.5 182.5 170.3 159.9 159.9 159.9 159.9 

Denaturant  81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0 

Gasoline Blendstock 93.08 96.7 96.8 96.9 97.0 97.2 97.3 97.5 97.5 

Diesel 93.08 98.7 98.8 98.8 99.0 99.2 99.3 99.9 99.9 
aCI for Biodiesel (D6) and NERD (D6) is constant and rounded to equal 90 as CARB gives palm oil diesel the high CI equal to gasoline. 
bCI for RCNG and RLNG is associated with the growing swine manure farms and digesters. 
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The benefit of blending ethanol on the BOB produced at the oil refiners is examined for E10 and 

E15. For 87 octane fuels the E10 BOB results in a 1.0 g CO2e/MJ reduction while a BOB 

formulated for E15 receives a 1.5 g CO2e/MJ GHG reduction, which is proportional to the GHG 

savings from the ethanol in E10. In this case of E15 a lower octane BOB is possible to produce 

87 AKI blended gasoline. 

 

In the case of E15 that results in a higher octane, the BOB is assigned the same 1 g CO2e/MJ 

savings as the E10 BOB as it is the same refined product.  The balance of E15 and E85 are 

estimated to result in higher octane fuels the same gasoline BOB used for E10 blending. All of 

the BOB for E10 or higher-octane blends is assigned 1 g CO2e/MJ GHG reduction due to the 

effect on oil refineries. A 5% increase in ethanol will result in an extra octane point while E85 

can have an octane number close to 93.  

 

Several studies examine the effect of octane on fuel economy. Higher octane allows for an 

advance in ignition timing and higher turbocharger boost in engines with knock sensors. A 1% to 

3% increase in energy economy is consistent with data from the EPA fuel economy guide where 

fuel consumption is reported or both E10 and E85 vehicles. The improvement in fuel economy 

from engine testing studies also indicates an efficiency improvement on the order of 1% for a 2-

point increase in octane (Shuai, 2013; Stradling, 2015; Leone, 2017).   Energy-economy ratio 

values of 1.005 and 1.02 were estimated for E15 and E85 respectively.  The EER represents the 

energy economy of gasoline (E10) relative to the alternative fuel.  

3.2 GHG Calculation Methods 

GHG emissions were calculated based on the displacement of petroleum fuels.  The aggregate 

mix of biofuels as well as crude oil resources provided the basis for GHG calculations. Displaced 

gasoline and diesel are calculated for each category of biofuel.  In the case of ethanol, the effect 

on octane blending is also calculated. The net change in GHG emissions corresponds to the 

aggregation of each component fuel in the RFS.  GHG emissions were calculated for each fuel 

category in equations 1, 2, and 3. 

 

GHG from alternative fuel = Fuel volume × LHV × CI for each fuel                       (1) 

The denaturant component of ethanol is calculated separately along with the biofuels 

 

Displaced emissions correspond to severe effects including: 

 

Alternative fuel volume × EER × LHV × CI for each fuel     (2) 

 

In the case of E15, E85, and CNG the EER values in this study are 1.005, 1.02, and 0.9 

respectively 

 

BOB volume associated with achieving 87 octane fuel × LHV × 1 g CO2e/MJ savings  (3) 
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For biodiesel and renewable diesel, the petroleum baseline fuel is diesel.  Biogas displaces a mix 

of gasoline and diesel with a more conservative EER of 0.9 assumed for diesel displacement. 

 

Net GHG emissions are calculated based on the CI of the renewable fuel minus the displaced 

fuel.  In the case of ethanol, additional octane blending benefits are included as part of the 

impact.  Table 8 provides an example for 1 billion gallons of ethanol with two CI value deployed 

either as E10 or E15.  In the case of E10, 1 billion gallons corresponds to 81,224 TJ of energy 

and displaces the same energy in the BOB.  For the E15 example here, half the ethanol displaces 

a proportional quantity of BOB.  The other half of the E15 (500 million gallons) results in an 

EER of 1.005 and displaces more BOB.   The effect on octane blending is also shown for each 

fuel volume. 

 

Table 8. Carbon Intensity Estimates of All Biofuels plus EPA Minimum Threshold 

  E10 87 Octane E15 87 Octane E15 88 Octane 

  TJ Gg GHG TJ Gg GHG TJ Gg GHG 

Energy Inputs and Emissionsa      

10% Wet Mill Coal Ethanol 8,122 720 4,061 360 4,061 360 

90% Dry Mill WDGS 

Ethanol 73,101 3,639 36,551 1,819 36,551 1,819 

Total Ethanol 81,224 4,359 40,612 2,180 40,612 2,180 

EER 1  1  1.005  
Displaced BOB -81,224 -7,862 -40,612 -3,931 -42,515 -4,115 

Total BOB 1,080,000  340,000  340,000  
Refinery Octane 1,080,000 -1,080 340,000 -510 226,667 -227 

Net Emissions   -4,583   -2,262   -2,162 

Fuel Volume       
Ethanol (B gal) 1  0.5b  0.5b  
RFG (B gal) 10   3.33  3.33   

aCI of Wet Mill Coal, Dry Mill WDGS, and BOB are 88, 49, and 96.8 g CO2e/MJ respectively.  

Octane blending effect of E10 and E15 are 1 and 1.5 g CO2e/MJ respectively. 
b 50% of the billion gallons of ethanol in the E10 example are calculated for an 87 octane and 88 

octane strategy.  In the 88 octane calculation the BOB receives a lower octane blending credit 

while displacing more BOB. 

3.3 Avoided GHG Emissions 

The avoided GHG emissions are calculated from  the reduction in CI from the revised petroleum 

baseline, as developed by Boland et al. (Boland, 2014). Figure 4 shows the total CO2 savings, in 

million metric tonnes per year (Million tonne/yr) from the inclusion of ethanol in the RFS2.  

 

Key changes in fuel volume include a growth in the production capacity of renewable diesel and 

biogas from animal waste.   
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The effect of different levels of E15 in 2025 are also examined using the approach outline 

previously assuming that 50% is blended at 87 octane and the balance results in higher octane 

fuel.  51% E15 in a gasoline pool of 138 billion gallons per year could be achieved with the 

current corn ethanol capacity in the U.S. of 17.46 billion gallons per year7. Note that the scenario 

for E15 shown here for 2025 uses more than the 15 billion gallons of D6 ethanol required under 

the RFS2. E15 results in additional GHG reductions because more ethanol is consumed as fuel 

and it enables the production of a lower octane BOB.    

 

Figure 5 shows the CO2 saving from all other biofuels. Since ethanol is thus far the major 

component of the RFS2, the majority of CO2 savings are due to the ethanol fuels. Figure 6 shows 

the total CO2 reductions of the RFS2 based on the analysis presented here. The base RFS 

assumptions are also shown in the graph, where the biofuels meet the minimum CI threshold 

mandated in the RIA (EPA, 2009) and as shown in Table 7. The RFS2 has resulted in the 

cumulative CO2 savings of 980 million metric tonnes over the period of implementation (till 

2020). The CO2 savings as calculated from the minimum CI threshold base assumptions outlined 

in the RIA (EPA, 2009) results in the cumulative CO2 savings of 593 million metric tonnes of 

CO2.  

 

 
Figure 4. GHG Savings from Ethanol 

 
6 US fuel ethanol production capacity for the year 2020.  

https://www.eia.gov/petroleum/ethanolcapacity/index.php 
7 EIA projects 9 million bbl/d of gasoline consumption in 2022 or 138 billion gallons per year. 29% of ethanol as 

E15 could be achieved with U.S. ethanol production capacity for 150 billion gallons per year of gasoline 

consumption. 
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Figure 5. GHG Savings from Other RFS2 Biofuels (Excluding Ethanol). 

 

 

 
Figure 6. GHG Savings from the RFS2 Program 
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4. Conclusions  

The RFS2 has resulted in GHG emissions reductions, which exceed the original projections from 

the 2010 final Rule. The increased GHG reductions are due to the following: 

 

1. Corn ethanol has adopted technology improvements, which results in greater than the 

20% reduction in GHG emissions originally required under the RFS. 

2. Petroleum GHG emissions are higher than the baseline projected by EPA. 

3. The mix of other renewable fuels has also contributed to additional GHG reductions even 

though cellulosic ethanol targets in the original rule have not been met.  

 

Biofuels have achieved and exceeded the GHG reductions estimated by EPA. The reductions are 

greater than the categories within the RFS2 because technology improvements have resulted in 

reductions in energy use and the RFS categories characterize typical renewable fuels. These 

categories were not intended to represent the weighted GHG reductions of all fuels produced 

under the rule. 
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