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October 5, 2017 

 

Attention:  Docket ID No. EPA–HQ–OAR–2015–0827 

Docket ID No. NHTSA–2016–0068 

 

U.S. Environmental Protection Agency 

1200 Pennsylvania Avenue, NW 

Washington, DC 20460 

 

National Highway Traffic Safety Administration 

1200 New Jersey Avenue SE 

Washington, DC 20590 

 

RE: Comments of the Renewable Fuels Association in Response to the Request for 

Comment on Reconsideration of the Final Determination of the Mid-Term Evaluation of 

Greenhouse Gas Emission Standards for Model Year 2022-2025 Light-Duty Vehicles, 82 

Fed. Reg. 39,551 (August 21, 2017) 

 

The Renewable Fuels Association (“RFA”) appreciates the opportunity to provide comments 

relevant to the Administrator’s reconsideration of the January 2017 Final Determination of the Mid-

term Evaluation of greenhouse gas emissions (“GHG”) standards for model year 2022–2025 light-

duty vehicles.  As the leading trade association representing America’s ethanol industry, RFA’s 

mission is to advance the development, production, and use of fuel ethanol by strengthening 

America’s ethanol industry and raising awareness about the benefits of renewable fuels.   

RFA particularly welcomed the Request for Comment’s focus on the “potential for high-

octane blends.”1  As expressed in comments previously submitted by RFA to the Environmental 

Protection Agency (“EPA”) and National Highway Traffic Safety Administration (“NHTSA”) 

(Attachments A and B), we were disappointed that the January 2017 Final Determination and the 

2016 Technical Assessment Report (“TAR”) largely ignored the role of octane, “the single most 

important property of gasoline” in determining engine design.2  Because the fuels Americans put in 

their engines have a significant impact on fuel economy and GHG emissions, RFA has encouraged 

the EPA and NHTSA throughout this rulemaking to evaluate both engines and fuels as integrated 

systems when assessing the efficacy of model year 2022-2025 fuel economy and GHG standards.   

                                                           
1
 82 Fed. Reg. 39551, 39553 (Aug. 21, 2017). 

2
 Julian Soell and R. Thomas Brunner, Mercedes-Benz, Comments on Proposed Tier 3 Rule, EPAHQ-OAR-2011-

0135-4676, at 3 (June 28, 2013). 
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These written comments, which supplement RFA’s oral comments from the September 6, 

2017 public hearing on this matter, focus on: 1) the importance of considering engines and fuels as 

integrated systems for the purposes of the 2022-2025 CAFE/GHG standards; 2) the fuel economy 

and emissions benefits of high-octane low carbon (HOLC) fuels; and 3) how EPA can utilize existing 

statutory authorities to promote higher octane fuels.   

I. EPA’s Final Determination should treat engines and fuels as integrated systems 

because fuel properties can have significant effects on fuel economy and emissions 

By itself, the internal combustion (IC) engine does nothing to propel a light duty vehicle or 

generate GHG emissions. It is only when a liquid fuel is introduced into the engine that the 

technology works to deliver the service of mobility. In this way, IC engines and liquid fuels combine 

to form a highly integrated system in which one component is useless without the other. Indeed, the 

IC engine’s efficiency and emissions can be greatly affected by the characteristics of the liquid fuel 

used in the engine. Unfortunately, in assessing the technologies potentially used to meet MY2022-

2025 CAFE and GHG standards, the Final Determination and TAR focused almost exclusively on 

the engine component of this system and give no consideration to the effect of various fuel properties 

on fuel economy and emissions. This is a significant shortcoming of the Final Determination process 

to date. 

a. EPA and NHTSA should follow the example of DOE, whose Co-Optima 

program appropriately recognizes the symbiotic relationship between fuels and 

engines 

Recognizing that fuels and engines must be developed in concert to maximize efficiency and 

emissions reductions, the U.S. Department of Energy has launched an initiative to focus on “Co-

optimization of Fuels and Engines for Tomorrow’s Energy Efficient Vehicles.” The initiative, known 

simply as “Co-optima,” endeavors to “…simultaneously tackle fuel and engine innovation to co-

optimize performance of both elements and provide dramatic and rapid cuts in fuel use and 

emissions.”3 Co-optima has two major research tracks, the first of which is “…improving near-term 

efficiency of spark-ignition engines through the identification of fuel properties and design 

parameters of existing base engines that maximize performance.”4 Importantly, this track includes 

identifying “candidate fuels” for use in co-optimized engines to achieve peak performance, energy 

efficiency and emissions reductions. The “market introduction target” for co-optimized fuels and IC 

engines under this research track is 2025.  

A recent summary of DOE research conducted as part of the Co-optima program 

demonstrates that significant additional improvement in fuel economy and GHG emissions reduction 

can occur when advanced IC engines are paired with HOLC fuels.5 Automakers have also advocated 

                                                           
3
 U.S. Department of Energy. Co-Optimization of Fuels & Engines for Tomorrow’s Energy-Efficient Vehicles. 

Available at: http://www.nrel.gov/docs/fy16osti/66146.pdf 
4
 Id. 

5
 Oak Ridge National Laboratory. July 2016. Summary of High-Octane, Mid-Level Ethanol Blends Study. 

ORNL/TM-2016/42 

http://www.nrel.gov/docs/fy16osti/66146.pdf
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for a coordinated approach to the development and regulation of engines and fuels. According to Dan 

Nicholson, vice president of global propulsion systems at GM, “Fuels and engines must be designed 

as a total system. It makes absolutely no sense to have fuel out of the mix.”6 

EPA and NHTSA tangentially acknowledged the importance of the Co-optima initiative in 

the TAR, stating that the agencies “…will continue to closely follow the Co-Optima program and 

provide input to DOE, including through EPA’s technical representative on the Co-Optima External 

Advisory Board, as this program has the potential to provide meaningful data and ideas for GHG and 

fuel consumption reductions in the light-duty vehicle fleet for 2026 and beyond.” However, this 

statement is the closest the TAR got to examining future engine technologies and fuels in a holistic, 

systems-based manner. 

II. Pairing advanced internal combustion engine technologies with high octane low 

carbon (HOLC) fuels would result in greater fuel economy and emissions benefits 

than considered by EPA and NHTSA in the TAR and Final Determination. 

As underscored elsewhere in these comments, EPA’s TAR and January 2017 Final 

Determination examined only the potential fuel economy and emissions improvements expected to 

result from adoption of various advanced IC engine technologies. The TAR does not consider the 

ability of HOLC fuels to multiply these fuel economy and emissions improvements. In essence, the 

TAR assumes the status quo for liquid fuels, meaning significant additional fuel economy 

improvements and emissions reductions are overlooked. 

According to a review of the TAR by automotive engineering firm Ricardo (included in 

Attachment A), “…many of the technologies that are discussed in the Draft TAR, including the ones 

with the highest expected penetration rates, could produce greater GHG and fuel economy benefits if 

paired with fuels offering higher octane ratings than contemplated by EPA and NHTSA for the 

agencies’ modeling exercises.” 

Numerous studies by the automotive industry, DOE, and academia have examined the 

efficiency gains and emissions reductions that can be achieved when HOLC fuels is used in an IC 

engine with HCR, turbocharging, and other advanced technologies discussed in the TAR. These 

studies have repeatedly shown that a high octane fuels (98-100 RON) used in HCR engines improves 

efficiency and reduces emissions by 4-10%, depending on drive cycle and other factors. Studies 

using a high octane mid-level ethanol blend also demonstrate that fuel economy and vehicle range 

using HOLC blends like E25 and E30 is equivalent or superior to performance using E10, even 

though the E25 and E30 blends have lower energy density. A new literature review by Ricardo 

summarizes the growing body of research that demonstrates the efficiency and emissions benefits of 

HOLC fuels (Attachment C). 

a. Ethanol’s unique properties make it an attractive candidate for boosting octane 

in future HOLC fuel blends 

                                                           
6
 Society of Automotive Engineers. Aug. 3, 2016. GM, Honda execs agree: Higher octane gas needed to optimize 

ICE efficiency. http://articles.sae.org/14940/   
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Certain chemical properties, such as “sensitivity” and heat of vaporization, make some octane 

boosters more attractive than others. As researchers have examined different methods of boosting 

gasoline octane ratings, one option—increased levels of ethanol—has stood out as the most efficient 

and economical pathway. 

Not only does ethanol offer extremely high octane (109 RON, 91 MON), it also features high 

sensitivity and high heat of vaporization. These are attractive properties that, when considered along 

with ethanol’s lower “lifecycle” carbon intensity and lower cost relative to other octane options, 

make ethanol the clear choice for future HOLC fuels. The importance of octane sensitivity and heat 

of vaporization are discussed in great detail in the Ricardo review of the TAR. Ricardo states that 

these benefits are important considerations for “…DI engines especially, both NA and turbocharged, 

which are expected to comprise the majority of future engines for both conventional and hybrid 

vehicles.” 

In addition to the tailpipe CO2 reductions observed in several of the studies cited in these 

comments, ethanol-based HOLC fuels also offer important lifecycle GHG emissions benefits. That 

is, the total “well-to-wheels” (WTW) emissions associated with producing and using ethanol are 

significantly lower per unit of energy delivered than the emissions resulting from petroleum 

production and use. The latest analysis conducted by DOE’s Argonne National Laboratory found that 

today’s corn ethanol reduces GHG emissions by an average of 34-44% compared to petroleum, while 

emerging cellulosic ethanol technologies offer GHG reductions of 88-108%.7 Similarly, a recent 

analysis commissioned by the U.S. Department of Agriculture found that 2014-era corn ethanol 

offered a 43% GHG reduction, on average, compared to gasoline.8 These benefits are compounded 

when the ethanol is used in a HOLC fuel that achieves greater fuel economy and vehicle range (i.e., 

more miles with less energy) than today’s marketplace fuels. 

In a recent study, Argonne National Laboratory examined the WTW GHG emissions impacts 

of HOLC fuels (100 RON) containing 25% and 40% ethanol.9 The analysis found that the inherent 

efficiencies resulting from using a high octane fuel in a HCR engine alone resulted in a 4-8% 

reduction in GHG emissions per mile compared to baseline E10 gasoline vehicles. Additional GHG 

reductions of 4-9% were realized as a result of corn ethanol’s lower lifecycle emissions upstream, 

meaning total GHG emissions per mile were 8% and 17% lower for E25 and E40, respectively, 

compared to baseline E10. Meanwhile, E25 and E40 HOLC blends made with cellulosic ethanol 

were shown to reduce total WTW GHG emissions by 16-31% per mile compared to E10. While high 

octane fuels using petroleum-derived octane sources may provide similar tailpipe CO2 reductions as 

                                                           
7
 Wang, M.; Han, J.; Dunn, J. B.; Cai, H.; Elgowainy, A. Well-to-wheels energy use and greenhouse gas emissions 

of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ. Res. Lett. 2012, 7, 1−13, DOI: 

10.1088/1748-9326/7/4/045905 
8
 Flugge, M., J. Lewandrowski, J. Rosenfeld, C. Boland, T. Hendrickson, K. Jaglo, S. Kolansky, K. Moffroid, M. 

Riley-Gilbert, and D. Pape, 2017. A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol. 

Report prepared by ICF under USDA Contract No. AG-3142-D-16-0243. January 30, 2017. 
9
 Oak Ridge National Laboratory. July 2016. Summary of High-Octane, Mid-Level Ethanol Blends Study. 

ORNL/TM-2016/42 



5 

 

ethanol-based HOLC fuels, they clearly do not offer the additional GHG reductions associated with 

ethanol’s full WTW lifecycle. 

Additional studies show that using ethanol as the source of octane in future high octane fuels 

has the potential to significantly decrease petroleum refinery GHG emissions by reducing the energy 

intensity of the refining process.10  

b. Use of an ethanol-based HOLC in optimized IC engines would be the lowest cost 

means of achieving compliance with CAFE and GHG standards for MY2022-

2025 and beyond 

A central objective of the TAR that informed the Final Determination is to estimate the 

potential costs associated with various technology pathways for achieving the MY2022-2025 CAFE 

and GHG standards. Again, however, the TAR tends to examine only the expected costs associated 

with various engine and vehicle technologies, with little or no consideration given to the associated 

fuel costs over the vehicle’s life. 

When only the costs of various engine technologies are considered, HCR stands out as one of 

the most cost-effective means available for increasing engine efficiency (Figure 1). 

 

The National Research Council estimates that the cost to the automaker to introduce higher 

compression ratio for use with “higher octane regular fuel” is likely $75-150 per vehicle.11 However, 

analysis by Air Improvement Resource, Inc. suggests “…costs of increased compression ratio would 

be near zero, especially if it were accomplished during normal engine re-design cycles.” Similarly, 

                                                           
10

 See “Refining Economics of U.S. Gasoline: Octane Ratings and Ethanol Content”, DS Hirshfeld, JA Kolb, JE 

Anderson, W Studzinski, and J Frusti. (2014) dx.doi.org/10.1021/es5021668 | Environ. Sci. Technol. 2014, 48, 

11064-11071; and “Petroleum refinery greenhouse gas emission variation related to higher ethanol blends at 

different gasoline octane rating and pool volume levels”, V Kwasniewski, J Blieszner, and R Nelson, DOI: 

10.1002/bbb.1612; Biofuels, Bioprod. Bioref (2015) 
11

 NRC. June 2015. TABLE S.2 NRC Committee’s Estimated 2025 MY Direct Manufacturing Costs of 

Technologies 
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Improved Lubricants
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Engine Friction Reduction 1

Intake Cam Phasing
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Engine Friction Reduction 2

Cylinder Deactiviation

Discrete Variable Valve Lift
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Figure 1. Cost per Percentage Point Increase in Engine Efficiency 

High Cost

Low Cost

Based on NRC (June 2015); Draft TAR (July 2016); AIR, Inc. (Sep. 2016) 
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Ricardo notes that “Since the costs to an OEM for increasing compression ratio are minimal for a 

new engine design, it is clear that implementing a high octane mid-level ethanol fuel standard would 

be the lowest cost technology and have even greater benefits in real world driving.” 

Still, the engine technology cost is only one-half of the equation when total vehicle purchase 

and operation costs are considered; fuel costs must also be considered. To examine the total cost of 

high compression ratio engines using a HOLC fuel (98 RON E25) as a technology pathway for 

compliance with 2022-2025 CAFE and GHG standards, Air Improvement Resource, Inc. (AIR) 

conducted a study using the same OMEGA model used by EPA and NHTSA for the TAR. The AIR 

study found that this pathway can substantially reduce the cost of compliance with the standards, 

concluding that “With higher compression ratio engines included, total costs of the 2025 model year 

standards are reduced from $23.4 billion to $16.8 billion. …This analysis has shown that if a high 

octane mid-level blend ethanol fuel such as 98-RON E25 were an option for model year 2022-2025 

vehicles meeting EPA’s GHG standards, overall program costs would be significantly reduced.” 

c. Increasing octane should not come at the expense of air quality, carbon 

emissions, or human health 

The potential for significant environmental, economic, and public health benefits from 

introducing higher octane fuels is obvious.  However, the transition to higher octane fuels must be 

accompanied by requirements that octane sources improve air quality, reduce carbon emissions, and 

protect public health. Without such protections, there is the potential that increasing gasoline octane 

could result in unnecessary backsliding on criteria air pollutants, air toxics, and other harmful 

emissions linked to certain high-octane hydrocarbons. When it comes to air quality and human 

health, not all octane sources are created equal. Ethanol reduces criteria pollutants, and is the only 

source of octane that is truly renewable and results in a significant reduction in carbon.  But much of 

the octane contribution in today’s gasoline comes from petroleum-derived aromatic hydrocarbons 

such as benzene, toluene, and the C8 aromatics like xylene.  Those sources of octane are far from 

benign. 

The health impacts of aromatic hydrocarbons are well known. A 2015 study published in the 

American Journal of Epidemiology linked benzene found in traffic emissions to childhood leukemia. 

A 2012 study published by the University of California ties the risk of autism to toxics found in 

traffic pollution. And a 2015 study published in the Journal of Environmental Health Perspectives 

links microscopic toxic particles in car exhaust to heart disease.  Aromatic hydrocarbons compose 

20-50% of the non-methane hydrocarbons in urban air and are considered to be one of the major 

precursors to urban secondary organic aerosols (SOA).  SOA is a form of fine particulate matter 

pollution (PM2.5), which is widely viewed as the most lethal air pollutant in the U.S. today.  

Moreover, new evidence is confirming that particulate matter from gasoline exhaust is a major source 

of black carbon, which is thought to be a significant contributor to climate change.   

To date, EPA has been relatively quiet on the growing health and environmental threat posed 

by increased aromatics in gasoline.  Because increasingly stringent fuel economy and GHG standards 

will likely result in increased use of higher octane fuels, the EPA must take into consideration the 
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ancillary health and climate impacts of the various octane sources, and assure that no backsliding can 

occur.   

III. Automotive engineers and executives, Department of Energy researchers, the 

National Research Council, and academia all are calling for HOLC fuels to increase 

fuel economy and decrease GHG emissions 

Over the past several years, a growing chorus of automotive engineers and executives, 

government scientists, expert panels, and university researchers has called for the introduction of 

HOLC fuels. These experts have clearly demonstrated that HOLC fuels would enable HCR engines 

and other advanced IC engine technologies, which in turn would improve engine efficiency and 

reduce emissions. Below is a partial list of statements from these experts regarding the need for 

HOLC fuels. 

 “Higher octane is necessary for better engine efficiency. It is a proven low-cost enabler to 

lower CO2; 100 RON fuel is the right fuel for the 2020-2025 timeframe.”—Dan Nicholson, 

vice president of global propulsion systems, GM12 

  “100 RON has been on the table for a long time. The only way we will ever get there is to 

continue to push and work in a collaborative way.” – Tony Ockelford, director of product 

and business strategy for powertrain operations, Ford Motor Company13 

 “We need to find a new equilibrium. Whether it is 98 or 100 (RON) octane, we need 

something at that level.”— Bob Lee, head of powertrain coordination, Fiat Chrysler14 

  “…it appears that substantial societal benefits may be associated with capitalizing on the 

inherent high octane rating of ethanol in future higher octane number ethanol-gasoline 

blends.” – Ford Motor Company15 

 “…a mid-level ethanol-gasoline blend (greater than E20 and less than E40) appears to be 

attractive as a long-term future fuel for automotive engines in the U.S.” – AVL Powertrain 

Engineering and Ford Motor Company16  

 “There has been a big push in the industry for higher octane ratings…and it is proven that 

you can gain several percentage points in improvement of fuel economy if you have higher 

octane rating fuel available.” – Dean Tomazic, executive vice president and chief technology 

officer, FEV North America17 

                                                           
12

 Truett, Richard. Automotive News. April 13, 2016. Powertrain executives press for higher octane gasoline to help 

meet mpg, CO2 rules.  
13

 Id. 
14

 Id. 
15

 J.E. Anderson et al. July 2012. High octane number ethanol–gasoline blends: Quantifying the potential benefits in 

the United States. Fuel, Volume 97: Pages 585–594. 
16

 Stein, R., Anderson, J., and Wallington, T., "An Overview of the Effects of Ethanol-Gasoline Blends on SI Engine 

Performance, Fuel Efficiency, and Emissions," SAE Int. J. Engines 6(1):470-487, 2013, doi:10.4271/2013-01-1635. 
17

 Detroit Public Television. Aug. 21, 2016. Autoline with John McElroy. Episode #2026 (“Deep Freeze for the 

ICE?”) 
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  “One of the advantages without costing more on the vehicle side is to look at upping the 

minimum octane rating on the fuel and allowing OEMs to optimize compression ratio in 

engines, which would give us an efficiency benefit without actually adding cost to the whole 

system. …the addition of ethanol blends would be a good improvement to actually drive 

efficiency.” – David McShane, vice president of business development, Ricardo, Inc.18  

 “If we could optimize engines only to operate on premium fuel, then life would be a lot 

easier for us and we’d be able to see much more of a benefit in terms of efficiency. …if 

ethanol was widely available then our life as developers of gasoline engines would become 

easier.” – Paul Whitaker, powertrain & technical director, AVL Powertrain Engineering19 

 “(High octane fuels), specifically mid-level ethanol blends (E25-E40), could offer significant 

benefits for the United States. These benefits include an improvement in vehicle fuel 

efficiency in vehicles designed and dedicated to use the increased octane.” – Oak Ridge 

National Laboratory, Argonne National Laboratory, and National Renewable Energy 

Laboratory20 

 “Improvements to engine efficiency made possible with ethanol fuels may be a synergistic 

approach to simultaneous compliance with CAFE and RFS II. This presents a unique and 

infrequent opportunity to dramatically alter internal combustion engine operation by 

improving fuel properties.” – Oak Ridge National Laboratory21  

 “Several technologies beyond those considered by EPA and NHTSA might provide 

additional fuel consumption reductions for spark ignition engines or provide alternative 

approaches at possibly lower costs for achieving reductions in fuel consumption by 2025. 

These technologies include…higher compression ratio with higher octane regular grade 

gasoline…” – National Research Council22 

 “[T]ransitioning the fleet to higher-octane gasoline would result in significant economic and 

environmental benefits through reduced gasoline consumption.” – Massachusetts Institute of 

Technology23 

IV. EPA has the authority—and the responsibility—to regulate gasoline octane levels. 

EPA retains broad authority in Section 211(c) of the Clean Air Act to regulate octane content 

in gasoline if EPA’s emissions standards cannot be achieved without increasing octane levels or if 

such an increase would significantly lower the costs of meeting the standards.  As explained below, 

                                                           
18

 Id. 
19

 Id. 
20

 Oak Ridge National Laboratory. July 2016. Summary of High-Octane, Mid-Level Ethanol Blends Study. 

ORNL/TM-2016/42. 
21

 Derek A. Splitter and James P. Szybist (2014) “Experimental Investigation of Spark-Ignited Combustion with 

High-Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed” Energy & Fuels. 
22

 NRC. June 2015, at 2-84. 
23

 R.L. Speth et al. Economic and environmental benefits of higher-octane gasoline. Environ Sci Technol. 2014 Jun 

17;48(12):6561-8. doi: 10.1021/es405557p 

http://www.ncbi.nlm.nih.gov/pubmed/24870412
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the evidence before the agency supports such a conclusion.  Alternatively, 211(f) can be used to 

increase octane levels in gasoline by facilitating the commercialization of mid-level ethanol blends. 

a. EPA’s Existing Authority to Regulate Octane Levels 

i. Clean Air Act Section 211(c) Provides Broad Authority for EPA to Promote 

High Octane Fuels 

Although EPA has not regulated gasoline octane directly, it has the authority to do so under 

section 211(c) of the Clean Air Act (“CAA”).  That provision affords EPA broad authority to 

regulate any aspect of a fuel that affects vehicle emissions.24  EPA has used this authority to regulate 

the composition of gasoline by restricting levels of lead, sulfur, and other additives.  25  Since octane 

levels impact emissions, EPA could use section 211(c) to control octane as well.  Specifically, upon 

satisfying certain specified criteria discussed below, EPA could “control or prohibit the manufacture, 

introduction into commerce, offering for sale, or sale of” gasoline below a certain octane level.26   

In order to invoke its authority under Section 211(c)(1)(A), EPA must demonstrate that the 

“fuel or fuel additive, or any emission product [thereof]… causes, or contributes, to air 

pollution…that may reasonably be anticipated to endanger public health or welfare.”27  If EPA were 

to promulgate regulations under this paragraph, it must consider “all relevant medical and scientific 

evidence,” including “other technically or economically feasible means of achieving emissions 

standards” established under CAA section 202.28  Although this language has been interpreted to 

mean that EPA must make a “good faith consideration of motor vehicle standards before imposition 

of fuel controls,”29 EPA “retains full discretion in deciding whether to adopt either fuel or vehicle 

controls, or both.”30  

As explained further below, EPA can regulate octane under Section 211(c)(1)(A).31   

                                                           
24

 See S. Rep. No. 91-1196 (stating that “[a]t one time the Committee [on Public Works of the Senate] considered 

language that would give the Secretary only authority to ‘prohibit’ a fuel’s introduction into commerce. After 

evaluation, the Committee decided that such authority should also be extended to the ‘control’ of a fuel’s 

introduction into commerce. This authority to ‘control’ the use of a fuel is intended to give the Secretary greater 

flexibility, than the authority to ‘prohibit’”); see also 61 Fed. Reg. 35310, 35313 (July 5, 1996) (“Section 211(c)(1) 

provides EPA broad authority to regulate the introduction into commerce, production, distribution, and sale of fuels 

and fuel additives to protect the public health and welfare.”). 
25

 See e.g., Amoco Oil Co. v. EPA, 501 F.2d 722, 743-744 (D.C. Cir. 1974) (upholding conditions on sale of leaded 

gasoline); U.S. EPA, “EPA’s Regulatory Authority to Address Octane” at 4 (May 5, 2015).  
26

 See 42 U.S.C. §7545(c)(1). 
27

 42 U.S.C. §7545(c)(1)(A). 
28

 Id. §7545(c)(2)(A). 
29

 61 Fed. Reg. at 35313-35314 (citing Ethyl Corp. v. EPA, 541 F.2d 1, 32 n. 66 (D.C. Cir. 1976). 
30

 Id. at 35314. 
31

 Alternatively, EPA could utilize its authority to regulate octane under section 211(c)(1)(B) by showing that 

emission products associated with lower octane fuels “impair to a significant degree the performance of any 

emission control device or system.” 42 U.S.C. §7545(c)(1)(B).  The Agency’s previous regulations under 

211(c)(1)(B) restricting lead and sulfur were tied to the impairment of catalytic emission controls from emission 

products containing these elements.  The same statutory authority would apply to octane – it would allow regulatory 

control over octane because low octane fuels impact engine compression ratios and impair the reduction in 

emissions that high compression systems would provide.  If EPA were to choose this option, it must consider 
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b. EPA Can Regulate Octane Under Section 211(c)(1)(A) Because Low Octane 

Gasoline Contributes to Air Pollution and Increases the Cost to Comply with 

Vehicle Emissions Standards 

Low octane gasoline (i.e., 87 AKI “regular” grade) has resulted in the widespread use of 

lower compression engines, which have higher carbon dioxide and other emissions than high 

compression engines using high octane fuel.32  According to EPA, carbon dioxide emissions are a 

form of air pollution that endangers public health and welfare.33  EPA has also determined that 

emissions from gasoline use cause or contribute to harmful air pollution.34  EPA can therefore 

demonstrate that low octane gasoline contributes to air pollution that endangers public welfare.  

Although EPA previously found that vehicle manufacturers would be able to meet 2022-2025 GHG 

standards through the use of existing low octane fuels, studies previously submitted by RFA and 

others show that higher octane fuels would allow for greater emission reductions at lower cost than 

can be achieved by changing only engines.35   

Use of higher octane, E20-E30 blends would provide significant carbon dioxide emissions 

reduction and several billion dollars of net savings each year.36  Increasing the compression ratio of 

the engine not only increases fuel economy, but it also allows for engine downsizing, which further 

increase fuel economy.  Studies suggest that legacy flex-fuel vehicles can benefit (e.g., faster 

acceleration) from high octane fuels as well.37  With regard to economic feasibility, according to 

comments from the Alliance of Automobile Manufacturers, “implementation of higher octane rated 

                                                                                                                                                                                           
“available scientific and economic data, including a cost benefit analysis comparing emission control devices or 

systems which are or will be in general use and require the proposed control or prohibition with emission control 

devices or systems which are or will be in general use and do not require the proposed control or prohibition.” Id. 

§7545(c)(2)(B). 
32

 See e.g., Han et al., Well-to-Wheels Greenhouse Gas Emissions with Various Market Shares and Ethanol Levels, 

ANL-ESD-10-15, 64 (2015) (finding E25 blend with 100 RON could reduce lifecycle GHG emissions by 10 

percent); M. Matti Maricq, et al., The Impact of Ethanol Fuel Blends on PM Emissions from a Light-Duty GDI 

Vehicle, 46 Aerosol Sci. & Tech. 576, 580 (2011) (finding that PM emissions are almost halved when the ethanol 

content of fuel is increased from 0% to 32% in a turbocharged GDI engine); John M. Storey et al., Ethanol Blend 

Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions, 3 SAE Int. J. Fuels Lubr. 

650, 653 (2010) (finding 30 percent reduction in particulate matter emissions when using E20 compared to E0). 
33

 Endangerment and Cause or Contribute Findings for Greenhouse Gases Under Section 202(a) of the Clean Air 

Act, 74 Fed. Reg. 66496 (Dec. 15, 2009). 
34

 See 61 Fed. Reg. at 35313 (citing 58 Fed. Reg. 64213, 64215 (Dec. 6, 1993)) (regulating gasoline and gasoline 

detergent additives). 
35

 Renewable Fuels Association, Comments of the Renewable Fuels Association (RFA) in response to Notice of 

Availability of Midterm Evaluation Draft Technical Assessment Report for Model Year 2022–2025 Light Duty 

Vehicle GHG Emissions and CAFE Standards, at 10 (Sept. 26, 2016) (“With higher compression ratio engines 

included, total costs of the 2025 model year standards are reduced from $23.4 billion to $16.8 billion. …This 

analysis has shown that if a high octane mid-level blend ethanol fuel such as 98-RON E25 were an option for model 

year 2022-2025 vehicles meeting EPA’s GHG standards, overall program costs would be significantly reduced.”); 

Oak Ridge Nat’l Laboratory, Summary of High-Octane, Mid-Level Ethanol Blends Study, at 16 (July 2016) (high-

octane mid-level ethanol blends increase fuel efficiency in new vehicles by 5-10 percent). 
36

 See Raymond Speth et al., Massachusetts Institute of Technology, “Potential Environmental and Economic 

Benefits of Higher-Octane Gasoline,” CRC Workshop, Argonne National Laboratory at 14 (Oct. 28, 2015). 
37

 Theiss, T., et al., U.S. DOE-Oak Ridge National Laboratory, National Renewable Energy Laboratory, and 

Argonne National Laboratory, “Summary of High-Octane Mid-Level Ethanol Blends Study” at 7, 16 (July 2016). 
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gasoline in the marketplace could be a cost-effective means of immediately improving fuel economy 

across a substantial portion of the existing light-duty vehicle fleet.”38  Although cost would arguably 

be a relevant factor for EPA to consider, EPA can adopt fuel regulations where, as here, it is 

“necessary or otherwise advisable” to achieve emissions standards.39   

c. Ethanol-based High Octane Fuels Would Not Increase Other Emissions 

Section 211(c)(2)(C) precludes EPA from prohibiting a fuel or fuel additive unless it makes a 

finding that the prohibition “will not cause the use of any other fuel or fuel additive which will 

produce emissions which will endanger the public health or welfare to the same or greater degree 

than the use of the fuel or fuel additive proposed to be prohibited.”40  As an initial matter, such an 

analysis would not necessarily be required because EPA would not be prohibiting any fuel or fuel 

additive, but rather would be controlling the octane level of the fuel.  The D.C. Circuit has held that if 

EPA regulations merely “control” the additives in the fuel, “the findings requirement [of 

211(c)(2)(C)], on its face, does not apply to the EPA action.”41  But even if EPA were to evaluate 

whether the new, high octane fuel was no worse than existing market fuels, an evaluation of vehicle 

emission performance on all pollutants, not just GHG, would be favorable.  Many studies have 

demonstrated that high octane mid-level ethanol blends, especially those produced via “splash 

blending,” reduce emissions of other important pollutants, such as carbon monoxide (CO), nitrogen 

oxides (NOx), and particulate matter (PM).42  

d. EPA Could Also Indirectly Increase Octane Levels by Facilitating Mid-Level 

Ethanol Blends Under Section 211(f) 

RFA supports higher octane fuel blends but recognizes that not all octane sources are equal.  

Ethanol provides unique benefits as an octane source.  For example, ethanol’s cooling effect provides 

additional efficiency gains.43  Ethanol also has a lower GHG carbon intensity than petroleum, and the 

difference is getting larger over time.44  According to the U.S. Department of Energy, “[w]hen the 

high-octane blend is made with 25%–40% ethanol by volume, this energy efficiency improvement is 

                                                           
38

 Alliance of Automobile Manufacturers, Comments on Draft Technical Assessment Report, EPA-HQ-OAR-0827, 

at 71 (Sept. 26, 2017). 
39

 Amoco Oil Co, 501 F.2d at 737 (“Section 211(c)(2)…establishes a rebuttable presumption that [EPA] should 

maintain a laissez faire posture with regard to fuel regulation.  To rebut the presumption [EPA] must determine...that 

fuel regulation is a necessary or otherwise advisable component in [its] overall strategy to meet the Section 202 

emissions standards.”).  Although the case related to regulations issued under section 211(c)(1)(B), the court’s 

rationale applies equally to reviewing regulations under section 211(c)(1)(A). 
40

 42 U.S.C. §7545(c)(2)(C). 
41

 Ethyl Corp., 541 F.2d at 32. 
42

 See e.g., Carolyn Hubbard et al., Ethanol and Air Quality: Influence of Fuel Ethanol Content on Emissions and 

Fuel Economic of Flexible Fuel Vehicles, 48 ENVIR. SCI. & TECH. 861, 863 (2014) (compared to E10, blends of 

E20, E30, and E40 had lower relative NOx emissions).  
43

 See Oak Ridge Nat’l Laboratory, Investigation of Knock Limited Compression Ratio of Ethanol Gasoline Blends 

(April 12, 2010). 
44

 See Boland. S. and Unnasch. S. (2014) Carbon Intensity of Marginal Petroleum and Corn Ethanol Fuels. Life 

Cycle Associates Report LCA.6075.83.2014, Prepared for Renewable Fuels Association. 
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potentially sufficient to offset the reduced vehicle range often associated with the decreased 

volumetric energy density of ethanol.”45 

As an alternative to using its broad authority in 211(c) to control octane levels of gasoline 

directly, section 211(f) could be used to increase octane levels indirectly by allowing mid-level 

ethanol blends.  Section 211(f)(1) prohibits introducing into the market for the first time a new fuel 

or fuel additive that is “not substantially similar to any fuel or fuel additive utilized in . . 

.certification,” absent a waiver pursuant to section 211(f)(4). 46  The same provision also makes it 

unlawful to “increase the concentration in use” of certain fuel additives—but, again, only those that 

are “not substantially similar to any . . . fuel additive utilized in . . . certification.”47  Until 2017, 

ethanol-blended fuels were not substantially similar to a certification fuel additive, because the 

gasoline certification fuel contained no ethanol, and EPA’s original waiver for E10 was limited to 

that “specified concentration” of ethanol.  Beginning this year, however, the gasoline emissions 

certification fuel now contains 10 percent ethanol.48  Because ethanol is a “fuel additive utilized in . . 

. certification,” section 211(f)(1) arguably no longer limits ethanol blending in market fuel.  

Whatever range of interpretations it may allow, the term “substantially similar” cannot reasonably be 

interpreted to exclude fuel additives that are identical to those used in certification.  At the very least, 

now that vehicle emissions certification fuel contains 10 percent ethanol, EPA should revisit its 

outdated rule interpreting “substantially similar” for purposes of section 211(f)(1).  To the extent 

EPA wishes to impose controls on ethanol in market fuel, it may still utilize its authority under 

211(c) to do so.    

V. EPA should take other steps to facilitate the broad commercial introduction of 

HOLC fuels 

At the September 6, 2017 public hearing on reconsideration of the Final Determination, EPA 

specifically asked stakeholders to provide recommendations regarding actions the Agency could take 

to best facilitate a transition from low-octane gasoline to HOLC fuels. RFA offers the following 

recommendations in response to EPA’s request for comment. 

a. Reform the petition process in 40 CFR 1065 for new certification fuels (e.g., high 

octane mid-level blends like E25 or E30) and eliminate unreasonable criteria for 

approval 

EPA’s Tier 3 Motor Vehicle Emission and Fuel Standards included provisions (codified at 40 

CFR 1065.701(c)) allowing engine manufacturers to petition the Agency for approval of an 

alternative certification fuel, including fuels with “higher octane [and] higher ethanol content” than 

the prescribed test fuel.49 While we strongly support a petition process for alternative certification 

                                                           
45

 Kristi Moriarty, National Renewable Energy Laboratory, “High Octane Fuel: Terminal Backgrounder” at v (Feb. 

2016).  
46

 42 U.S.C. §7545(f)(1). 
47

 Id. 
48

 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards, 79 Fed. Reg. 

23414, 23810 (Apr. 28, 2014), codified at 40 C.F.R. § 1065.710(b)(2). 
49

 79 Fed. Reg. 23528 
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fuels, EPA’s criteria for approving such petitions are impractical, discourage innovation, and deter 

engine manufacturers from seeking approval of new certification fuels. 

Specifically, EPA stated that petitioners seeking approval of an alternative certification fuel 

must demonstrate that such a fuel “would be readily available nationwide” and that “vehicles would 

not operate appropriately on the other available fuels.”50 These unreasonable conditions create a 

“chicken vs. egg” dilemma that discourages engine manufacturers from pursuing approval of new 

certification fuels. That is, fuel blenders and retailers will not make a fuel “readily available 

nationwide” unless a substantial share of automobiles on the road are certified and approved to use 

the fuel. But automakers cannot certify new automobiles on an alternative certification fuel unless the 

fuel is “readily available nationwide.” This circuitous requirement virtually guarantees that engine 

manufacturers will be unable to secure approval of alternative certification fuels. EPA should clarify 

that a fuel need not be “readily available nationwide” as a condition of approval of new certification 

fuel petitions.  

Similarly, the requirement to demonstrate that “vehicles would not operate appropriately on 

other available fuels” discourages flexibility and innovation, and deters engine makers from pursuing 

approval of alternative certification fuels. As an example, an engine manufacturer may design a high-

compression ratio engine that is optimized and requires high octane fuel (e.g., 98 RON); the 

automaker may wish to certify the vehicle on a high octane test fuel. In this case, the key variable 

allowing efficient operation of this engine is the octane rating. However, that octane rating can be 

achieved commercially using many different gasoline blending components. Since octane rating is 

the key enabler of efficiency in this engine, the engine could be designed to operate appropriately 

both on ethanol-free premium gasoline with 98 RON octane and on splash-blended E30 with 98 

RON octane. However, the current regulatory requirements to show that the vehicle “would not 

operate appropriately on other available fuels” would prohibit engine manufacturers from embracing 

flexible approaches to engine design. 

b. Eliminate unnecessarily burdensome and costly requirements related to the 

registration process for new fuels and additives as required under 40 CFR 79. 

Current regulations governing the registration of new fuels and fuel additives are 

unnecessarily complex and costly, and have effectively shielded incumbent motor fuels from 

competition. While the general requirements for registering a new fuel are prescribed in CAA 211(b) 

and CAA 211(f), EPA’s interpretation of these provisions, and the resultant regulations promulgated 

by EPA, are overly expansive and burdensome. The cumbersome and costly process to register E15 

(and the unwieldy conditions of EPA’s approval of a CAA 211(f) waiver for E15) serves as a 

poignant example of the superfluous nature of EPA’s administration of the fuel registration process. 

First, EPA’s overly narrow interpretation of what constitutes “substantially similar” under 

CAA 211(f) effectively prevents new fuels from obtaining registration, and forces producers of those 

fuels to instead pursue a waiver from CAA 211(f) requirements. EPA’s restrictive interpretation that 

                                                           
50

 Id. 
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new fuels must have the same “elemental composition” as the gasoline used to determine compliance 

with emissions standards virtually guarantees that no renewable fuel or new ethanol/gasoline blend 

will ever be deemed “substantially similar” (incidentally, different gasolines can have distinctly 

different “elemental composition,” yet EPA treats all gasolines as being of homogenous 

composition). 

Thus, manufacturers of these new fuels must pursue a CAA 211(f) waiver to show that the 

fuel will not “cause or contribute” to the failure of emissions control devices. The process established 

by EPA to secure such a 211(f) waiver is lengthy, costly, and uncertain. EPA requires extensive 

exhaust and evaporative emissions testing over the “full useful life” of vehicles and engines, robust 

materials compatibility testing, and subjective “driveability” testing. These tests can cost tens of 

millions of dollars to perform. 

Once all of the tests are completed, the manufacturer of the new fuel must submit an 

application with all test results to EPA. Acceptance of the materials by EPA is not guaranteed. 

However, if the Agency accepts the application, a public docket is established and EPA has up to 270 

days to respond to the applicant. Further, EPA may decide that approval of a CAA 211(f) waiver 

application is conditional upon fuel manufacturers meeting additional requirements as determined by 

the Agency (e.g., EPA implemented an additional “misfueling mitigation” regulation as part of its 

CAA 211(f) waiver approval for E15). 

In addition to the CAA 211(f) waiver requirements described above, the manufacturer of a 

new fuel must also conduct “…tests to determine potential public health and environmental effects of 

the fuel…” as required by CAA 211(b). Again, EPA’s interpretation of this statutory requirement is 

overly expansive and financially exorbitant. EPA requires detailed analysis of exhaust emissions, 

including speciation of a wide variety of compounds. The Agency also requires animal testing to 

determine the potential health effects of exposure to the fuel’s evaporative emissions. Finally, 

recently promulgated Tier 3 motor fuel regulations essentially give EPA free rein to determine 

whether any other additional health effects tests are needed to satisfy the requirements of CAA 

211(b). 

Taken together, these EPA fuel registration requirements form an arduous barrier and 

unreasonable standard for approval of new fuels. As a consequence, new renewable fuel blends that 

provide distinct and well-known environmental and human health benefits are effectively shut out of 

the market and incumbent fossil fuels are insulated from competition. While EPA’s expansive and 

liberal interpretation of statutory fuel registration requirements may be prudent for entirely new or 

novel fuel molecules, compounds, or blends about which little is known, it is unnecessary for fuels 

and blends that have been thoroughly analyzed and are well understood.  

Ethanol has been used as a motor fuel component for decades. The existing information and 

data regarding ethanol’s composition, emissions impacts, materials compatibility, effects on 

“driveability,” and health effects is more than sufficient to support EPA decision-making about 

registration of new gasoline/ethanol blends for use in compatible gasoline engines. 
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When the effects of gasoline/ethanol blends like E20, E25, and E30 are already well-known, 

it makes no sense for EPA to interpret the requirements of 211(b) and 211(f) as rigidly and 

expansively as it has done in the past for new fuels. It is time for EPA to modernize, simplify and 

streamline its interpretation of statutory fuel registration requirements. Doing so would truly open the 

market to competition, remove barriers to expanded use of renewable fuels, stimulate job creation, 

and drive down consumer fuel costs. 

c. Update the “R-factor” for fuel economy (CAFE) compliance calculations to 

better represent modern engines and fuels, as recommended by the Department 

of Energy and numerous automakers. 

EPA incorporates the use of a so-called “R-factor” in fuel economy calculations in order to 

address concerns about the impacts of test fuel property variations on corporate average fuel 

economy (CAFE) compliance. The R-factor is defined as the ratio of the percent change in fuel 

economy to the percent change in volumetric heating value for tests conducted using two differing 

fuels.  

Based on outdated 1980s-era vehicle testing data, EPA requires that automakers use an R-

factor of 0.6 in CAFE compliance calculations. However, recent reassessments of the R-factor were 

conducted to determine the impacts of adjustments to the properties of certification gasoline under 

EPA’s Tier 3 regulations. Specifically, the new Tier 3 certification fuel contains 10% ethanol by 

volume, and EPA allows automakers to petition the Agency for approval to use certification fuels 

with even higher levels of ethanol (e.g. 25% or 30% ethanol by volume). Because ethanol has a 

lower heating value than gasoline, the inclusion of ethanol in certification fuels is expected to result 

in a significant deviation from the CAFE baseline test fuel heating value. Thus, the accuracy of the 

R-factor in predicting fuel economy changes resulting from heating value changes becomes 

increasingly important. Recent studies by Oak Ridge National Laboratory, Ford Motor Company, 

and others have found that the R-factor for modern engines and vehicles is very close to 1.0.51 Based 

on these findings, many stakeholders encouraged EPA to raise the R-factor to 1.0 during the Tier 3 

public notice and comment period. However, the Agency has so far neglected to adjust the R-factor 

to account for the efficiency of modern engines. 

EPA’s continued failure to raise the R-factor serves to discourage automakers from pursuing 

certification and commercialization of engines designed to operate on higher levels of ethanol. In 

fact, using the EPA-required R-factor of 0.6 instead of 1.0 would result in a substantial 4.7% 

certification fuel economy penalty for a vehicle designed for E30 and a 2.4% penalty for using E15.52 

                                                           
51

 See, Sluder, C., West, B., Butler, A., Mitcham, A. et al., “Determination of the R Factor for Fuel Economy 

Calculations Using Ethanol-Blended Fuels over Two Test Cycles,” SAE Int. J. Fuels Lubr. 7(2):551-562, 2014, 

doi:10.4271/2014-01-1572; and Sluder, C. Scott and Brian H. West. Oak Ridge National Laboratory. “Preliminary 

Examination of Ethanol Fuel Effects on EPA’s R-factor for Vehicle Fuel Economy.” June 2013. ORNL/TM-

2013/198 
52

 Woebkenberg, William. Mercedes-Benz Research & Development North America. “Mid-Blend Ethanol Fuels – 

Implementation Perspectives.” Presentation to Society of Automotive Engineers. July 25, 2013. 
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Clearly, penalties of this magnitude are a strong deterrent to automakers interested in designing 

engines that are optimized to use higher-ethanol blends. 

We strongly encourage EPA to revise the R-factor to 1.0, which is justified by the latest 

scientific literature. Doing so would encourage—rather than deter—innovation in engine design and 

remove yet another EPA-erected barrier to expanded renewable fuel use. 

d. Revise the fuel economy formula for potential high-octane mid-level ethanol 

blend certification fuels  

As described in a previous section of these comments, EPA regulations allow a petitioner to 

request the use of an alternative certification fuel. As each test fuel approved by EPA for use in 

certification testing has its own fuel economy formula, we request that EPA adopt the formula 

described below for high-octane mid-level ethanol blends (the proposed formula below is based on a 

potential certification fuel containing 25 percent ethanol by volume and offering 98-100 RON 

octane).53 

𝑚𝑝𝑔 =
(5,714 ×  104  ×  𝐶𝑊𝐹)

[((𝐶𝑊𝐹 × (𝑁𝑀𝑂𝐺 + 𝐶𝐻4)) + (0.429 ×  𝐶𝑂) + (0.273 ×  𝐶𝑂2))  ×  𝑁𝐻𝑉]
×  1.05 

where, 

 5174 x 104 = density of H2O at 60ºF x specific gravity of 1975 reference fuel x 

NHV of 1975 reference fuel; 

 CWF is the carbon weight fraction of the certification test fuel; 

 NHV is the net heating value of the certification test fuel; 

 NMOG is the non-methane organic gas [g/mi] in the exhaust gas as determined in 

accordance with applicable test procedures; 

 CH4 is the methane [g/mi] in the exhaust gas– CO is the carbon monoxide [g/mi] 

in the exhaust gas; and 

 CO2 is the carbon dioxide [g/mi] in the exhaust gas 

This recommended formula is based on the current fuel economy equation for gasoline 

vehicles, with some important adjustments.54 First, as addressed in earlier comments, the proposed 

formula corrects the current equation’s R-factor to avoid falsely reporting a loss in fuel economy 

relative to the 1975 certification fuel.55 Consistent with the fuel economy formula requested by 

                                                           
53

 40 C.F.R. §§ 600.113-12(h) (gasoline), (i) (diesel), (j) (methanol), (k) (natural gas), (l) (ethanol), (m) (liquefied 

petroleum gas). 
54

 See id. § 600.113-12(h)(1). The current fuel economy equation for gasoline omits oxygenated hydrocarbons, 

measuring pure hydrocarbons only instead. Id. § 600.113-12(h). “Although oxygenated hydrocarbons are an 

insignificant contributor to the fuel economy value, their effect has been included” in the proposed formula “by 

virtue of using NMOG in the equation.” GM Comments, supra note Error! Bookmark not defined., at 4. 
55

 The R-factor is a measure of “how vehicles respond to changes in the energy content of the fuel.” Tier 3 Rule, 79 

Fed. Reg. at 23531. The current R-factor of 0.6 implies that a 10% change in the test fuel’s energy content, for 
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automakers in the Tier 3 rulemaking, the proposed formula is calibrated to an R-factor of 1, which 

cancels out the illusory changes in fuel economy that would result under the current formula, from 

the lower energy content of a potential E25 certification fuel.56  

Second, the proposed fuel economy formula includes a 5% multiplier (x 1.05) in recognition 

of the lower carbon content of the proposed certification fuel. (E25 contains approximately 5% less 

carbon per gallon than the current E10 certification fuel.) This multiplier would be a conservative 

exercise of EPA’s discretion to “decide on the quantity of other fuel that is equivalent to one gallon 

of gasoline,” as authorized by the Energy Independence and Security Act of 2007.57 EPA has used 

this statutory authority to credit alternative fuels with the potential to reduce petroleum 

consumption.58 

In the alternative, EPA could develop a fuel economy equation that credits ethanol for its 

upstream greenhouse gas emissions reduction, as the Agency has asserted authority to do.59 

e. Level the playing field for credit generation for all alternative fuel vehicles, 

including flexible fuel vehicles (FFV), under the 2017-2025 CAFE/GHG rules. 

The 2017-2025 CAFE/GHG finalized by EPA and NHTSA in 2012 created powerful and 

lucrative incentives for automakers to increase production of certain alternative fuel vehicles. 

Specifically, EPA created an “incentive multiplier” for all electric vehicles (EVs), plug-in electric 

vehicles (PHEVs), fuel cell vehicles (FCVs) and compressed natural gas vehicles (CNGVs) sold in 

model year 2017-2021.60 In essence, the incentive multiplier allows these alternative fuel vehicles to 

count as more than one vehicle in the manufacturer’s GHG compliance calculation (meaning 

                                                                                                                                                                                           
example, causes only a 6% change in vehicle fuel economy. Id. As demonstrated by Oak Ridge National Laboratory, 

the current R-factor is too low. Oak Ridge Nat’l Lab., Preliminary Examination of Ethanol Fuel Effects on EPA’s R-

factor for Vehicle Fuel Economy 12 (2013) (“The current factor of 0.6 which is called out in CFR is clearly too low, 

and a proper factor for modern vehicles is closer to unity, as might be expected from improved air/fuel ratio control 

common for more modern vehicles.”). This means that the illusory fuel economy losses generated by changes in the 

energy content of the test fuel are not fully cancelled under the current equation, as required by law. See 26 U.S.C. § 

4064(c) (“Fuel economy . . . shall be measured in accordance with testing and calculation procedures . . . utilized by 

the EPA Administrator for model year 1975 . . . or procedures which yield comparable results.”). EPA has 

recognized that the R-factor is in need of correction. See 2012 CAFE/GHG Rule, 77 Fed. Reg. at 62777–78 (“If the 

certification test fuel is changed to include ethanol through a future rulemaking, EPA would be required under 

EPCA to address the need for a test procedure adjustment to preserve the level of stringency of the CAFE standards. 

EPA is committed to doing so in a timely manner to ensure that any change in certification fuel will not affect the 

stringency of future GHG emission standards.”). 
56

 Auto Alliance Tier 3 Comments, supra note Error! Bookmark not defined., at 98; Ford Comments, supra note 

Error! Bookmark not defined., at 4; GM Comments, supra note Error! Bookmark not defined.Error! 

Bookmark not defined., at 4. 
57

 49 U.S.C. § 32904(c) (authorizing EPA to “decide on the quantity of other fuel that is equivalent to one gallon of 

gasoline”). 
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 Response to Comments on the 2012 CAFE Rule, at 6-164. 
59

 See 2012 CAFE/GHG Rule, 77 Fed. Reg. 62624, 62819 (Oct. 15, 2012) (“EPA . . . believes that although section 

202(a)(1) of the Clean Air Act does not require the inclusion of upstream GHG emissions in these regulations, the 

discretion afforded under this provision allows EPA to consider upstream GHG emissions”); 2010 CAFE/GHG 

Rule, 75 Fed. Reg. 25,437 (May 7, 2010) (“EPA is reasonably and fairly accounting for the incremental increase in 

upstream GHG emissions from both the electric vehicles and the conventional vehicles.”). 
60
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emissions from one vehicle are spread across multiple vehicles, diluting the emissions value per 

vehicle). In addition, EPA entirely ignored the upstream (well-to-tank “lifecycle”) emissions impacts 

of electricity production and set the emissions value for EVs at 0 grams of CO2/mile.61 EPA further 

provided generous “utility factors” to dual-fueled CNGVs and PHEVs, which assume those vehicles 

will be fueled with the lower-GHG alternative fuel most of the time. 

Meanwhile, the provisions of the 2017-2025 CAFE/GHG rules strongly discourage 

automakers from further production of FFVs. For FFVs, EPA originally proposed requiring 

automakers to demonstrate actual usage of alternative fuel in the vehicle in order to generate the 

associated credit toward compliance with GHG standards. Of course, this is impractical and 

unreasonable, so EPA also finalized an alternative approach whereby the Agency would issue “early 

guidance” to automakers establishing a standard E85 utility factor (“F factor”) based on national 

weighted average E85 consumption.62 

In early 2013, EPA issued a draft of its first “early guidance” document outlining the FFV 

weighting factor to be used for Model Years 2016-2019. The EPA draft proposed an F factor of 0.2, 

meaning EPA projected that 20% of a MY 2016-2019 FFV’s lifetime miles would be driven on 

E85.63  Several stakeholder groups, including RFA, commented on the draft guidance and 

demonstrated why a higher F factor in the range of 0.4-0.6 was warranted.64 In response to these 

comments, EPA issued final guidance in late 2014 that further reduced the F factor for MY 2016-

2018 FFVs to just 0.14.65 Meanwhile, EPA discontinued in MY2015 the use of a separate 

incentive—the 0.15 “alternative fuel economy divisor” factor—which in the past strongly 

encouraged FFV production. Thus, the 2017-2025 standards provide almost no incentive to 

automakers to build FFVs, while other alternative fuel vehicles receive generous credits and 

incentives. The impacts of EPA’s discriminatory credit regimen are already being felt in the 

marketplace—FFV production in MY2015 was down nearly 1 million vehicles, or 34%, from the 

record output level in MY2014, according to EPA’s own data.66  

While we agree with EPA that automakers should be encouraged to produce vehicles that 

“[r]educ[e] petroleum consumption to improve energy security”, “save the U.S. money” and 

“[r]educe climate change impacts,”67 we believe incentives to stimulate the production of such 

vehicles should be constructed fairly and consistently. EPA should restore an equitable utility factor 

for FFVs in the range of 0.4-0.6 through MY2025. 
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f. Reject the results of the EPAct/V2/E-89 Fuel Effects Study and suspend further 

use or development of the MOVES2014 model until a new emissions study based 

on appropriate test fuels is conducted. 

According to a number of independent third-party reviews, EPA’s newest vehicle emissions 

modeling system (MOVES2014) is inadequate and unreliable as a tool for estimating the exhaust 

emissions of gasoline blends containing more than 10% ethanol. This is important because state air 

agencies use the MOVES modeling system to demonstrate compliance with Clean Air Act 

requirements. In its current condition, the model would likely discourage states from pursuing the use 

of higher ethanol blends as a strategy for reducing mobile source emissions. 

The flaws in MOVES2014 with regard to ethanol blends stem from the model’s use of data 

from the EPAct/V2/E-89 Fuel Effects Study. RFA strongly recommends suspending further use or 

development of the MOVES2014 model until a new emissions study is conducted using test fuels 

that more accurately represent real-world fuel blends. 

In early 2016, a detailed analysis of the MOVES2014 model conducted by scientists from 

Wyle Laboratories and the Volpe National Transportation Systems Center concluded that, “Overall, 

it was found that the predictive emissions results generated by MOVES2014 for mid-level ethanol 

blends were sometimes inconsistent with other emissions results from the scientific literature for both 

exhaust emissions and evaporative emissions…results and trends from MOVES2014 for certain 

pollutants are often contrary to the findings of other studies and reports in the literature.”68 

Of particular concern is that the MOVES2014 model predicts increased exhaust emissions of 

nitrogen components and particulate matter as the ethanol content in gasoline increases, even though 

real-world emissions testing based on mid-level ethanol blends has shown distinctly opposite trends. 

“The results from other researchers often show ethanol-related emissions trends that are different 

than the MOVES2014 results obtained for this study…” the study found. “In some cases not only 

were magnitudes different but different [directional] trends were presented.”69 

The model’s questionable predictions for certain emissions results from its use of data that 

misrepresents the actual parameters and composition of mid-level ethanol blends. Specifically, the 

default ethanol blend data in the MOVES2014 model is based on arcane “match blending” methods 

intended to “match” specific fuel parameters, rather than “splash blending” methods that are used in 

the real world. This data comes from the EPAct/V2/E-89 Fuel Effects Study.   According to Wyle 

and Volpe experts, “…real-world splash blends may not have the same attributes as the modeled 
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default match blends used in MOVES, and actual emissions may be different than the emissions 

predictions from MOVES.”70 

These likely distortions are then multiplied through the use of overly restrictive adjustment 

factors and equations. The authors write that “…the trends used to determine constants in the 

model’s equations may need to consider many more variables than are now being considered,” and 

“the adjustment factor approach may need to be more robust and consider the changes to emissions 

as a function of all properties, not independently.” In an attempt to simulate the emissions of mid-

level ethanol blends created using real-world “splash blending” practices, the Wyle and Volpe 

scientists performed an analysis where certain fuel parameters were modified. However, the model 

still produced questionable results that suggested increases in emissions of nitrogen components and 

PM as ethanol content increases. 

To correct the deficiencies with the MOVES2014 model, the Wyle and Volpe scientists 

recommend obtaining new mid-level ethanol blend emissions data using blends that better represent 

real-world fuel properties and blending practices. They write that “…additional vehicle exhaust 

testing from mid-level ethanol blends with well-defined fuel properties is recommended.” RFA 

agrees with the conclusions and recommendations of the Wyle/Volpe study and encourages EPA to 

suspend further usage of the MOVES2014 model until a new emissions study is conducted. 
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September 26, 2016 
 
Attention:  Docket ID No. EPA–HQ–OAR–2015–0827 
                      Docket ID No. NHTSA–2016–0068 
 
U.S. Environmental Protection Agency 
1200 Pennsylvania Avenue, NW 
Washington, DC 20460 
 
National Highway Traffic Safety Administration 
1200 New Jersey Avenue SE 
Washington, DC 20590 

RE: Comments of the Renewable Fuels Association (RFA) in response to Notice of Availability of 
Midterm Evaluation Draft Technical Assessment Report for Model Year 2022–2025 Light Duty Vehicle 
GHG Emissions and CAFE Standards (81 Fed. Reg. 49,217; July 27, 2016) 

The Renewable Fuels Association (RFA) appreciates the opportunity to comment on the Draft Technical 
Assessment Report (TAR) published by the U.S. Environmental Protection Agency (EPA) and National 
Highway Traffic Safety Administration (NHTSA) in July 2016. 

RFA is the leading trade association for America’s ethanol industry. Its mission is to advance the 
development, production, and use of fuel ethanol by strengthening America’s ethanol industry and 
raising awareness about the benefits of renewable fuels. Founded in 1981, RFA serves as the premier 
meeting ground for industry leaders and supporters. RFA’s 300-plus members are working to help 
America become cleaner, safer, more energy secure, and economically vibrant. 

I. Executive Summary 

In 2012, EPA and NHTSA promulgated final regulations establishing corporate average fuel economy 
(CAFE) and greenhouse gas (GHG) emissions standards for model year (MY) 2017-2025 light-duty 
vehicles (LDVs). Included in the 2012 final rule was a regulatory requirement for the agencies to conduct 
a Midterm Evaluation (MTE) of the standards established for MY2022-2025. Through the MTE, the 
agencies must determine whether the MY2022-2025 standards established in 2012 are still appropriate 
in light of the latest available data and information. 

The first step in the MTE process was the July 2016 release of a Draft Technical Assessment Report (TAR) 
for public comment. The TAR examines a wide range of technical issues relevant to the GHG emission 
and augural CAFE standards for MY2022-2025, including assessments of technology effectiveness and 
cost, as well as modeling of various compliance scenarios. EPA and NHTSA state that the information in 
the TAR and the comments received in response to the document “will inform the agencies’ subsequent 
determination and rulemaking actions.”1 Further, they commit to “fully consider public comments on 
this Draft TAR as they continue to update and refine the analyses for further steps in the MTE process.”2 
RFA has reviewed the TAR and has also commissioned a technical analysis of the TAR by Ricardo, Inc. 
(Attachment A), an engineering and technical consultancy with expertise in automotive technologies. 
Our examination of the TAR, along with Ricardo’s analysis, leads to the following main conclusions: 
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 Many of the advanced internal combustion (IC) engine technologies examined in the TAR 
implicitly call for liquid fuels with higher octane than is offered by today’s regular gasoline.  

 While the TAR examines various advanced IC engine technologies, it fails to simultaneously 
examine the fuels that enable those engine technologies. In general, the TAR fails to treat IC 
engines and liquid fuels as integrated systems, even though fuel properties can have significant 
effects on fuel economy and emissions. 

 The TAR ignores the influence on fuels of other public policies, like the Renewable Fuel Standard 
(RFS), aimed at reducing petroleum consumption and GHG emissions. 

 Pairing the advanced IC engine technologies examined in the TAR with high octane low carbon 
(HOLC) fuels with 98-100 RON octane would result in greater fuel economy and emissions 
benefits than considered by EPA and NHTSA. 

 Use of an ethanol-based HOLC in optimized IC engines would be the lowest cost means of 
achieving compliance with CAFE and GHG standards for MY2022-2025 and beyond. 

At the conclusion of these comments, RFA offers a number of recommendations for EPA and NHTSA’s 
forthcoming “Proposed Determination” and the remainder of the MTE process. Chief among them are 
suggestions that EPA and NHTSA treat engines and fuels as integrated systems during the MTE process, 
and that the agencies “heed the call” from automakers, government scientists, expert panels, and 
academia to establish a regulatory roadmap for the broad commercial introduction of HOLC fuels to 
enable advanced IC engines no later than 2025. 

These comments and recommendations are discussed more fully below. 

II. Internal combustion engines will continue to serve as the predominant propulsion 
technology for light duty vehicles through 2025 and beyond 

Much like the 2012 final rule, the TAR concludes that internal combustion (IC) engines powered by liquid 
fuels will continue to serve as the most prevalent propulsion technology for LDVs, stating that only 
“modest levels” of strong hybridization and “very low levels” of full electrification (plug-in vehicles) are 
expected by 2025.3  

Further, the agencies determine that the efficiency of modern IC engines can be significantly improved 
through increased adoption of incremental technologies that exist today or are near commercialization.4 
These technologies, and their likely impacts on efficiency and CO2 emissions, are discussed in great 
detail in Chapter 5 of the TAR. Several of these newer IC engine technologies (including “higher 
compression ratio, naturally aspirated gasoline engines”) were not originally considered by the agencies 
for the 2012 final rule.5 According to EPA and NHTSA, these modest IC engine improvements can enable 
compliance with MY2022-2025 fuel economy and GHG emissions standards: “The agencies’ analyses 
each project that the MY2022-2025 standards can be met largely through improvements in gasoline 

                                                           
3
 Id., at ES-2. 

4
 Id., at 5-12 (“[i]nternal combustion engine improvements continue to be a major focus in improving the overall 

efficiency of light-duty vehicles.” and “Vehicle manufacturers have more choices of technology for internal 
combustion engines than at any previous time in automotive history and more control over engine operation and 
combustion.”) 
5
 Id., at ES-4 (“Beyond the technologies the agencies considered in the 2012 final rule, manufacturers are now 

employing several technologies, such as higher compression ratio, naturally aspirated gasoline engines, and 
greater penetration of continuously variable transmissions (CVTs); other new technologies are under active 
development and are expected to be in the fleet well before MY2025.”) 
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vehicle technologies, such as improvements in engines….”6 Indeed, the agencies project market 
penetration rates of just 2-3% or less will be necessary for full hybrids, plug-in hybrid electric vehicles, 
and battery electric vehicles to meet the MY2025 standards, while penetration rates of 33-54% are 
expected for certain advanced IC engine technologies.7 

The agencies’ views that IC engines will continue as the predominant powertrain technology through at 
least 2025, and that significant gains in IC engine efficiency are likely, are consistent with the positions of 
leading experts in the automotive engineering field. Moreover, the agencies’ analysis showing that the 
costs of key advanced IC technologies are lower than costs for other powertrain options is also generally 
aligned with stakeholder positions. According to Paul Whitaker, powertrain and technical director for 
AVL Power Train Engineering, “We see big efficiency improvements with (IC) engines today and see the 
potential for lots more in the future, and they are very inexpensive relative to the other options.”8 
Additionally, the U.S. Department of Energy (DOE) states that “…vehicles with internal combustion 
engines will continue to comprise a significant portion of the nation’s vehicle fleet for the next several 
decades.”9 Further, the National Research Council (NRC) states, “…spark-ignition engines are expected 
to be dominant beyond 2025.”10 

RFA agrees with the TAR’s overarching conclusions that IC engines will continue to be the predominant 
LDV propulsion technology through 2025 and beyond, that further improvements in IC engine efficiency 
are imminent, and that such improvements are relatively low cost in comparison to other options. 

III. Many of the advanced IC engine technologies examined in the TAR implicitly call for fuels 
with higher octane ratings than today’s regular grade gasoline 

The TAR examines in detail a number of advanced IC engine technologies that are expected to facilitate 
compliance with MY2022-2025 CAFE and GHG standards. However, as discussed in subsequent sections 
of these comments, the TAR’s examination of these engine technologies does not generally include 
analysis of the effects of fuel properties—such as octane rating—on fuel efficiency and emissions.  

a. EPA and NHTSA examine various advanced IC engine technologies, but fail to 
simultaneously examine the fuels that enable those engine technologies 

Ricardo’s analysis of the TAR (Attachment A) shows that many of the advanced IC engine technologies 
examined by EPA and NHTSA would experience increased fuel efficiency and generate fewer emissions if 
operating on fuels with higher octane ratings than today’s regular 87 AKI gasoline. According to the 
Ricardo report, “…the TAR does examine in detail a number of advanced spark-ignition engine 
technologies that would clearly produce greater fuel economy and emissions benefits when using higher 
octane mid-level ethanol blends than regular gasoline.” Ricardo cites gasoline direct injection (GDI), 
turbocharging, downsizing, cylinder deactivation and higher compression ratio, naturally aspirated (HCR 
NA) engines as technologies examined in the TAR that would “benefit further from high octane fuels.” 

In examining the TAR’s discussion on GDI, turbocharging, downsizing and cylinder deactivation, Ricardo 
concluded, “These technologies are used to increase the average load on the engine, and therefore 

                                                           
6
 Id., at ES-9. 

7
 Id., Table ES-3 at ES-10 

8
 Detroit Public Television. Aug. 21, 2016. Autoline with John McElroy. Episode #2026 (“Deep Freeze for the ICE?”)  

9
 U.S. Department of Energy. Co-Optimization of Fuels & Engines for Tomorrow’s Energy-Efficient Vehicles. 

Available at: http://www.nrel.gov/docs/fy16osti/66146.pdf  
10

 National Research Council, Committee on the Assessment of Technologies for Improving Fuel Economy of Light-
Duty Vehicles. June 2015. Cost, Effectiveness and Deployment of Fuel Economy Technologies for Light-Duty 
Vehicles, at S-4. 
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make it more prone to knocking. Because the engine tends to run more often at or near a knock-limited 
condition, it can take advantage of a high octane fuel.” As Ricardo explains, GDI and turbocharging are 
“…often employed together in a downsized engine package because the in-cylinder charge cooling effect 
from GDI helps to mitigate the knocking tendency.” The TAR shows that market penetration rates for 
GDI and turbocharging have expanded rapidly in recent years, with GDI growing from 2% of the market 
to 45% between MY2008 in MY2015 and turbocharging growing from 3% to 18% in the same timeframe. 
EPA and NHTSA expect more than 90% of IC engines to employ GDI and turbocharging by MY2025.11 

The TAR also discusses emerging Atkinson cycle and Miller cycle engine technologies, both of which 
would also operate more efficiently on high octane fuels, according to the Ricardo report. And while it 
may not seem immediately obvious, Ricardo reports that even advanced technologies like variable 
compression ratio, certain transmission technologies, and even hybrid electric vehicles (when operating 
on engine power) would benefit from the use of a higher octane fuel. 

The technology discussed in the TAR that is most reliant on higher octane is HCR NA engines. EPA 
projects that HCR NA engines will need to penetrate 44% of the light duty vehicle market by 2025 to 
facilitate compliance with CAFE and GHG standards.12 However, according to Ricardo, “…compression 
ratios cannot be increased with existing engine technologies using our current standard gasoline octane 
ratings and even more so with engine technologies that are expected to be increasingly utilized in the 
future, such as downsizing and boosting.” Similarly, the NRC cites “currently available octane levels” as 
the key “limitation on [increasing] compression ratio.”13 Thus, it is somewhat puzzling that EPA would 
include such heavy reliance on HCR NA engines in the TAR without any accompanying discussion of the 
fuels and octane ratings necessary to enable this technology.   

Collectively, these current and emerging engine technologies point to the need for a higher octane 
rating for regular gasoline. Indeed, the effectiveness of future advanced IC engines in improving fuel 
economy and reducing emissions will in part be determined by the octane rating of the liquid fuels they 
use. The use of high octane fuels in these engines would ensure they produce the maximum possible 
fuel economy and emissions reductions. 

b. Increased use of certain advanced IC engine technologies has already resulted in 
greater demand for higher octane fuels 

Growth in turbocharging has already resulted in increased demand for higher-octane fuels, according to 
recent analysis by the Energy Information Administration (EIA).14 The EIA analysis suggests that more 
stringent CAFE and GHG standards caused automakers to increase the market penetration of 
turbocharging from 3.3% in MY2009 to 17.6% in MY2014. The surge in turbocharging was accompanied 
by an increase in the demand for high octane premium gasoline, according to EIA. In fact, premium 
gasoline sales rose from 7.8% of total gasoline sales in June 2008 to 11.3% of total gasoline sales by 
September 2015. 

According to the EIA analysis, “As automakers produce more vehicles with turbocharged engines, it is 
likely they will recommend or require more LDVs to use higher-octane gasoline. Premium gasoline sales 
as a percent of total gasoline sales are likely to increase as more car models either recommend or 
require premium gasoline. This increase is expected to continue as automakers increase the use of 
turbocharging as one strategy to comply with increasingly stringent fuel economy standards.”  
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 EPA, NHTSA, CARB. July 2016. Draft TAR, Figure 3.10 and 3.11 at 3-12 
12

 Id., Table ES-3 at ES-10. 
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 NRC. June 2015 at S-4. 
14

 EIA. April 6, 2016. Engine design trends lead to increased demand for higher-octane gasoline. 
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The EIA report is corroborated by analysis performed by MathPro, Inc., a consulting firm that specializes 
in petroleum refining economics.15 MathPro’s analysis shows that the average pool-wide octane rating 
for gasoline increased from approximately 88.2 AKI in 2009 to 88.5 in 2015, largely as a result of 
increased sales of vehicles requiring or recommending the use of premium gasoline. In examining the 
TAR’s projections of future advanced IC engine technology deployment, MathPro concluded that greater 
use of higher compression ratio and turbocharging will “substantially increase the call for octane.” 

Based on projected growth in turbocharging alone, MathPro calculated that premium gasoline could 
account for 17-22% of total gasoline sales by 2025, depending on varying levels of consumer adherence 
to the auto manufacturers’ fueling recommendations. According to MathPro, “By itself, increasing the 
use of turbocharging could increase the required average octane of the gasoline pool by 0.3-0.6 
numbers (AKI), depending on consumer response to fueling recommendations.” Notably, this MathPro 
analysis does not account for the impact of HCR, which would further intensify the call for octane. EPA 
projects HCR NA engine technology will need to penetrate 44% of the market by MY2025 (compared to 
3% or less today) to facilitate compliance with the standards. 

It is important to note, however, that retail prices for premium grade gasoline have annually averaged 7-
16% more than regular grade gasoline prices since 2010 ($0.24-0.40/gallon).16 This cost increase likely 
has deterred some owners of GDI, turbocharged vehicles from purchasing premium, even though the 
manufacturer recommends or requires premium. The cost discrepancy between regular and premium 
grade gasoline also highlights the need to leverage lower-cost sources of octane, such as ethanol. 

IV. The TAR fails to treat IC engines and liquid fuels as integrated systems, even though fuel 
properties can have significant effects on fuel economy and emissions 

By itself, the IC engine does nothing to propel a light duty vehicle or generate GHG emissions. It is only 
when a liquid fuel is introduced into the engine that the technology works to deliver the service of 
mobility. In this way, IC engines and liquid fuels combine to form a highly integrated system in which 
one component is useless without the other. Indeed, the IC engine’s efficiency and emissions can be 
greatly affected by the characteristics of the liquid fuel used in the engine. Unfortunately, in assessing 
the technologies potentially used to meet MY2022-2025 CAFE and GHG standards, the TAR focuses 
almost exclusively on the engine component of this system and gives no consideration to the effect of 
various fuel properties on fuel economy and emissions. This is a significant shortcoming of the TAR. 

a. EPA and NHTSA should follow the example of DOE, whose Co-Optima program 
appropriately recognizes the symbiotic relationship between fuels and engines 

Recognizing that fuels and engines must be developed in concert to maximize efficiency and emissions 
reductions, the U.S. Department of Energy has launched an initiative to focus on “Co-optimization of 
Fuels and Engines for Tomorrow’s Energy Efficient Vehicles.” The initiative, known simply as “Co-
optima,” endeavors to “…simultaneously tackle fuel and engine innovation to co-optimize performance 
of both elements and provide dramatic and rapid cuts in fuel use and emissions.”17 Co-optima has two 
major research tracks, the first of which is “…improving near-term efficiency of spark-ignition engines 
through the identification of fuel properties and design parameters of existing base engines that 
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 MathPro, Inc. Sep. 8, 2016. Capturing Ethanol’s Octane Value in Gasoline Blending. Webinar presentation to RFA 
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maximize performance.”18 Importantly, this track includes identifying “candidate fuels” for use in co-
optimized engines to achieve peak performance, energy efficiency and emissions reductions. The 
“market introduction target” for co-optimized fuels and IC engines under this research track is 2025.  

A recent summary of DOE research conducted as part of the Co-optima program (Attachment B) 
demonstrates that significant additional improvement in fuel economy and GHG emissions reduction 
can occur when advanced IC engines are paired with high octane low carbon (HOLC) fuels.19 Automakers 
have also advocated for a coordinated approach to the development and regulation of engines and 
fuels. According to Dan Nicholson, vice president of global propulsion systems at GM, “Fuels and engines 
must be designed as a total system. It makes absolutely no sense to have fuel out of the mix.”20 

EPA and NHTSA tangentially acknowledge the importance of the Co-optima initiative in the TAR, stating 
that the agencies “…will continue to closely follow the Co-Optima program and provide input to DOE, 
including through EPA’s technical representative on the Co-Optima External Advisory Board, as this 
program has the potential to provide meaningful data and ideas for GHG and fuel consumption 
reductions in the light-duty vehicle fleet for 2026 and beyond.” However, this statement is the closest 
the TAR gets to examining future engine technologies and fuels in a holistic, systems-based manner. 

b. The TAR’s assumptions regarding future liquid fuels are often unclear and inconsistent 

In general, the TAR does not discuss liquid fuel properties in the context of their potential effects on fuel 
economy and emissions. However, as part of the agencies’ analysis of technology cost, effectiveness, 
and lead time, the TAR necessarily makes some assumptions about the liquid fuels used in advanced IC 
engines. Unfortunately, these fuel property assumptions—particularly with respect to octane—are often 
unclear, misaligned, or inconsistent with the properties of today’s market fuels and, more importantly, 
those expected in the future. The fuel properties assumed for the TAR’s engine testing, engine mapping, 
demonstrations of compliance, and assessments of technology effectiveness and cost often vary widely, 
leading to apples-to-oranges results and conclusions. Ultimately, however, the key pieces of the EPA and 
NHTSA analyses (e.g., demonstrations of compliance) generally assume the status quo for fuels (i.e., 
predominantly 87 AKI gasoline) will continue through 2025. 

The TAR contains a number of examples of misaligned assumptions and testing results related to fuels 
generally, and octane rating specifically. EPA testing of the 2.0L and 2.5L variants of the Mazda 
SKYACTIV-G engine apparently used 88 AKI (91 RON) fuel with 10% ethanol (E10) and 92 AKI (96 RON) 
fuel without ethanol.21 Meanwhile, testing of the Ricardo 3.2L V6 Turbocharged, GDI “EBDI” used 91 
RON (87 AKI E10), but all fuel consumption results developed in this study “assumed use of U.S. 
Certification Gasoline (95 RON, E0).”22 Further, the TAR states that engine mapping conducted by IAV for 
NHTSA “…used gasoline with LHV = 41.3 MJ/kg for the mapping but the naturally aspirated engines were 
calibrated with 87 (R+M)/2 rating fuel and the turbocharged engines used 93 octane fuel.”23 Despite the 
likelihood that manufacturers of turbocharged engines likely would require or recommend the use of 
91-93 AKI retail fuels (premium grade), the NHTSA vehicle fuel economy results for turbocharged 
engines were adjusted to represent certification fuel by using the ratio of the lower heating values of 
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the test and certification fuels. Apparently, this was done because “NHTSA understands that using such 
fuel (i.e., 93 AKI) might lead to overestimating the effectiveness of the technology, especially for high 
BMEP engines.”24 Thus, despite being justified in its choice to use 93 AKI fuel for turbocharged engines, 
NHTSA says it “…will ensure that all future engine model development is performed with regular grade 
octane gasoline.”25 

For the demonstration of compliance with light-duty vehicle GHG and CAFE standards, EPA chose a 93 
RON (roughly 89 AKI) gasoline with no ethanol.26 Further, the TAR states that “EPA's analysis of 
effectiveness with gasoline fueled engines did not include analysis of effectiveness using Tier 3 
certification gasoline (E10, 87 AKI) although protection for operation in-use on 87 AKI E10 gasoline was 
included in the analysis of engine technologies considered both within the original FRM and within the 
Draft TAR.”27 Finally, EPA’s OMEGA modeling used “petroleum gasoline” without ethanol to determine 
the quantity of fuel savings, with EPA explaining that “petroleum gasoline…is different than retail fuel, 
which is typically blended with ethanol…”28 

c. The TAR ignores the influence on fuels of other public policies aimed at reducing 
petroleum consumption and GHG emissions  

EPA administers a number of other regulatory programs focused on fuels and GHG emissions, the most 
notable of which is the Renewable Fuel Standard (RFS). The RFS is responsible for rapid growth in the 
use of ethanol and other biofuels since 2005, and today ethanol represents 10% of U.S. gasoline 
consumption. Further increases in renewable fuel production and use in the future are required under 
the RFS, meaning larger volumes of ethanol will be available through the 2025 timeframe. Given that 
ethanol represents a large and growing portion of the U.S. gasoline pool, it is unfathomable that EPA 
and NHTSA would use gasoline with no ethanol to model compliance scenarios for the MY2022-2025 
CAFE and GHG standards. In reality, the RFS will continue to drive investment and innovation in 
renewable fuel technologies, and high-octane ethanol will represent an increasing share of the gasoline 
pool through 2025 and beyond. The impacts of the RFS and other regulations on the composition and 
mix of the U.S. gasoline pool should be considered by EPA and NHTSA throughout the MTE process.  

The TAR also ignores the potential impacts of EPA’s Tier 3 fuel regulations, which include a provision 
allowing automakers to potentially certify new vehicles to HOLC fuels. Indeed, the Tier 3 regulation cites 
E30 as a potential HOLC that could improve engine efficiency: “…we allow vehicle manufacturers to 
request approval for an alternative certification fuel such as a high-octane 30 percent ethanol by volume 
blend (E30) for vehicles that may be optimized for such fuel. …This could help manufacturers who wish 
to raise compression ratios to improve vehicle efficiency as a step toward complying with the 2017 and 
later light-duty greenhouse gas and CAFE standards.”29 

Finally, by failing to consider the fuels that will enable these new technologies, the agencies miss an 
opportunity to address another critically important public policy priority – reducing global climate 
change.  This Administration has made reducing GHG emissions a priority, as evidenced by its leadership 
at last year’s Paris Climate Change Conference (COP21).  But it is clear now that we can’t address climate 
change by attacking coal and power generation alone, as the Administration’s plan submitted to the UN 
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appears to do.  Transportation is now the single largest source of U.S. GHG emissions.30 Promoting fuels 
that reduce GHG emissions, such as ethanol, must be a part of any successful climate change policy.   

In summary, the TAR generally omits discussion on the potential effects of various liquid fuel properties, 
such as octane rating, on engine efficiency or emissions. However, certain elements of the TAR (e.g. 
engine tests, engine mapping, etc.) required EPA and NHTSA to make assumptions about the fuels used 
in future IC engines; in these instances, assumptions about fuel properties were often found to be 
unclear, inconsistent, or not representative of current and future expectations regarding marketplace 
fuels. Further, the agencies ignore the significant influence of other regulatory programs, like the RFS, 
on the current and future composition and mix of U.S. fuels. 

Because liquid fuels and IC engines act as integrated systems, the EPA and NHTSA should ensure any 
other analyses conducted for the MTE properly consider both the impacts of the fuel and the engine on 
fuel efficiency and emissions. Further, EPA and NHTSA should, to the extent possible, use consistent 
assumptions about future fuel properties when conducting engine testing and mapping, compliance 
demonstrations, cost modeling, and other analyses for the MTE.  

V. Pairing the advanced IC engine technologies examined in the TAR with high octane low 
carbon (HOLC) fuels would result in greater fuel economy and emissions benefits than 
considered by EPA and NHTSA. 

As underscored elsewhere in these comments, the TAR examines only the potential fuel economy and 
emissions improvements expected to result from adoption of various advanced IC engine technologies. 
The TAR does not consider the ability of high octane low carbon (HOLC) fuels to multiply these fuel 
economy and emissions improvements. In essence, the TAR assumes the status quo for liquid fuels, 
meaning significant additional fuel economy improvements and emissions reductions are overlooked. 

According to the attached Ricardo report, “…many of the technologies that are discussed in the Draft 
TAR, including the ones with the highest expected penetration rates, could produce greater GHG and 
fuel economy benefits if paired with fuels offering higher octane ratings than contemplated by EPA and 
NHTSA for the agencies’ modeling exercises.” 

Numerous studies by the automotive industry, DOE, and academia have examined the efficiency gains 
and emissions reductions that can be achieved when HOLC fuels is used in an IC engine with HCR, 
turbocharging, and other advanced technologies discussed in the TAR. These studies have repeatedly 
shown that a high octane fuels (98-100 RON) used in HCR engines improves efficiency and reduces 
emissions by 4-10%, depending on drive cycle and other factors. Studies using a high octane mid-level 
ethanol blend also demonstrate that fuel economy and vehicle range using HOLC blends like E25 and 
E30 is equivalent or superior to performance using E10, even though the E25 and E30 blends have lower 
energy density. Many of these studies are discussed in detail in Attachments A, B, and C. 

a. Ethanol’s unique properties make it an attractive candidate for boosting octane in 
future HOLC fuel blends 

Certain chemical properties, such as “sensitivity” and heat of vaporization, make some octane boosters 
more attractive than others. As researchers have examined different methods of boosting gasoline 
octane ratings, one option—increased levels of ethanol—has stood out as the most efficient and 
economical pathway. 

Not only does ethanol offer extremely high octane (109 RON, 91 MON), it also features high sensitivity 
and high heat of vaporization. These are attractive properties that, when considered along with 
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ethanol’s lower “lifecycle” carbon intensity and lower cost relative to other octane options, make 
ethanol the clear choice for future HOLC fuels. The importance of octane sensitivity and heat of 
vaporization are discussed in great detail in the Ricardo report (Attachment A). Ricardo states that these 
benefits are important considerations for “…DI engines especially, both NA and turbocharged, which are 
expected to comprise the majority of future engines for both conventional and hybrid vehicles.” 

In addition to the tailpipe CO2 reductions observed in several of the studies cited in these comments, 
ethanol-based HOLC fuels also offer important lifecycle GHG emissions benefits. That is, the total “well-
to-wheels” (WTW) emissions associated with producing and using ethanol are significantly lower per 
unit of energy delivered than the emissions resulting from petroleum production and use. The latest 
analysis conducted by DOE’s Argonne National Laboratory found that today’s corn ethanol reduces GHG 
emissions by an average of 34-44% compared to petroleum, while emerging cellulosic ethanol 
technologies offer GHG reductions of 88-108%.31 These benefits are compounded when the ethanol is 
used in a HOLC fuel that achieves greater fuel economy and vehicle range (i.e., more miles with less 
energy) than today’s marketplace fuels. 

In a recent study, Argonne National Laboratory examined the WTW GHG emissions impacts of HOLC 
fuels (100 RON) containing 25% and 40% ethanol.32 The analysis found that the inherent efficiencies 
resulting from using a high octane fuel in a HCR engine alone resulted in a 4-8% reduction in GHG 
emissions per mile compared to baseline E10 gasoline vehicles. Additional GHG reductions of 4-9% were 
realized as a result of corn ethanol’s lower lifecycle emissions upstream, meaning total GHG emissions 
per mile were 8% and 17% lower for E25 and E40, respectively, compared to baseline E10. Meanwhile, 
E25 and E40 HOLC blends made with cellulosic ethanol were shown to reduce total WTW GHG emissions 
by 16-31% per mile compared to E10. While high octane fuels using petroleum-derived octane sources 
may provide similar tailpipe CO2 reductions as ethanol-based HOLC fuels, they clearly do not offer the 
additional GHG reductions associated with ethanol’s full WTW lifecycle. 

Additional studies show that using ethanol as the source of octane in future high octane fuels has the 
potential to significantly decrease petroleum refinery GHG emissions by reducing the energy intensity of 
the refining process.33  

b. Use of an ethanol-based HOLC in optimized IC engines would be the lowest cost 
means of achieving compliance with CAFE and GHG standards for MY2022-2025 and 
beyond 

A central objective of the TAR is to estimate the potential costs associated with various technology 
pathways for achieving the MY2022-2025 CAFE and GHG standards. Again, however, the TAR tends to 
examine only the expected costs associated with various engine and vehicle technologies, with little or 
no consideration given to the associated fuel costs over the vehicle’s life. 

                                                           
31

 Wang, M.; Han, J.; Dunn, J. B.; Cai, H.; Elgowainy, A. Well-to-wheels energy use and greenhouse gas emissions of 
ethanol from corn, sugarcane and cellulosic biomass for US use. Environ. Res. Lett. 2012, 7, 1−13, DOI: 
10.1088/1748-9326/7/4/045905 
32

 Oak Ridge National Laboratory. July 2016. Summary of High-Octane, Mid-Level Ethanol Blends Study. ORNL/TM-
2016/42 
33

 See “Refining Economics of U.S. Gasoline: Octane Ratings and Ethanol Content”, DS Hirshfeld, JA Kolb, JE 
Anderson, W Studzinski, and J Frusti. (2014) dx.doi.org/10.1021/es5021668 | Environ. Sci. Technol. 2014, 48, 
11064-11071; and “Petroleum refinery greenhouse gas emission variation related to higher ethanol blends at 
different gasoline octane rating and pool volume levels”, V Kwasniewski, J Blieszner, and R Nelson, DOI: 
10.1002/bbb.1612; Biofuels, Bioprod. Bioref (2015) 
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When only the costs of various engine technologies are considered, HCR stands out as one of the most 
cost-effective means available for increasing engine efficiency (Figure 1). 

 

The National Research Council estimates that the cost to the automaker to introduce higher 
compression ratio for use with “higher octane regular fuel” is likely $75-150 per vehicle.34 However, 
analysis by Air Improvement Resource, Inc. (Attachment C) suggests “…costs of increased compression 
ratio would be near zero, especially if it were accomplished during normal engine re-design cycles.” 
Similarly, Ricardo (Attachment A) notes that “Since the costs to an OEM for increasing compression ratio 
are minimal for a new engine design, it is clear that implementing a high octane mid-level ethanol fuel 
standard would be the lowest cost technology and have even greater benefits in real world driving.” 

Still, the engine technology cost is only one-half of the equation when total vehicle purchase and 
operation costs are considered; fuel costs must also be considered. To examine the total cost of high 
compression ratio engines using a HOLC fuel (98 RON E25) as a technology pathway for compliance with 
2022-2025 CAFE and GHG standards, Air Improvement Resource, Inc. (AIR) conducted a study 
(Attachment C) using the same OMEGA model used by EPA and NHTSA for the TAR. The AIR study found 
that this pathway can substantially reduce the cost of compliance with the standards, concluding that 
“With higher compression ratio engines included, total costs of the 2025 model year standards are 
reduced from $23.4 billion to $16.8 billion. …This analysis has shown that if a high octane mid-level 
blend ethanol fuel such as 98-RON E25 were an option for model year 2022-2025 vehicles meeting EPA’s 
GHG standards, overall program costs would be significantly reduced.” 

c. Increasing octane should not come at the expense of air quality, carbon emissions, or 
human health 

The potential for significant environmental, economic, and public health benefits from introducing 
higher octane fuels is obvious.  However, the transition to higher octane fuels must be accompanied by 
requirements that octane sources improve air quality, reduce carbon emissions, and protect public 
health. Without such protections, there is the potential that increasing gasoline octane could result in 
unnecessary backsliding on criteria air pollutants, air toxics, and other harmful emissions linked to 
certain high-octane hydrocarbons. When it comes to air quality and human health, not all octane 
sources are created equal. Ethanol reduces criteria pollutants, and is the only source of octane that is 
truly renewable and results in a significant reduction in carbon.  But much of the octane contribution in 

                                                           
34

 NRC. June 2015. TABLE S.2 NRC Committee’s Estimated 2025 MY Direct Manufacturing Costs of Technologies 
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today’s gasoline comes from petroleum-derived aromatic hydrocarbons such as benzene, toluene, and 
the C8 aromatics like xylene.  Those sources of octane are far from benign. 

The health impacts of aromatic hydrocarbons are well known. A 2015 study published in the American 
Journal of Epidemiology linked benzene found in traffic emissions to childhood leukemia. A 2012 study 
published by the University of California ties the risk of autism to toxics found in traffic pollution. And a 
2015 study published in the Journal of Environmental Health Perspectives links microscopic toxic 
particles in car exhaust to heart disease.  Aromatic hydrocarbons compose 20-50% of the non-methane 
hydrocarbons in urban air and are considered to be one of the major precursors to urban secondary 
organic aerosols (SOA).  SOA is a form of fine particulate matter pollution (PM2.5), which is widely 
viewed as the most lethal air pollutant in the U.S. today.  Moreover, new evidence is confirming that 
particulate matter from gasoline exhaust is a major source of black carbon, which is thought to be a 
significant contributor to climate change.   

To date, EPA has been relatively quiet on the growing health and environmental threat posed by 
increased aromatics in gasoline.  Because increasingly stringent fuel economy and GHG standards will 
likely result in increased use of higher octane fuels, the EPA must take into consideration the ancillary 
health and climate impacts of the various octane sources, and assure that no backsliding can occur.   

VI. Automotive engineers and executives, Department of Energy researchers, the National 
Research Council, and academia all are calling for HOLC fuels to increase fuel economy and 
decrease GHG emissions 

Over the past several years, a growing chorus of automotive engineers and executives, government 
scientists, expert panels, and university researchers has called for the introduction of HOLC fuels. These 
experts have clearly demonstrated that HOLC fuels would enable HCR engines and other advanced IC 
engine technologies, which in turn would improve engine efficiency and reduce emissions. Below is a 
partial list of statements from these experts regarding the need for HOLC fuels. 

 “Higher octane is necessary for better engine efficiency. It is a proven low-cost enabler to lower 
CO2; 100 RON fuel is the right fuel for the 2020-2025 timeframe.”—Dan Nicholson, vice 
president of global propulsion systems, GM35 

  “100 RON has been on the table for a long time. The only way we will ever get there is to 
continue to push and work in a collaborative way.” – Tony Ockelford, director of product and 
business strategy for powertrain operations, Ford Motor Company36 

 “We need to find a new equilibrium. Whether it is 98 or 100 (RON) octane, we need something 
at that level.”— Bob Lee, head of powertrain coordination, Fiat Chrysler37 

  “…it appears that substantial societal benefits may be associated with capitalizing on the 
inherent high octane rating of ethanol in future higher octane number ethanol-gasoline 
blends.” – Ford Motor Company38 

                                                           
35

 Truett, Richard. Automotive News. April 13, 2016. Powertrain executives press for higher octane gasoline to help 
meet mpg, CO2 rules.  
36

 Id. 
37

 Id. 
38

 J.E. Anderson et al. July 2012. High octane number ethanol–gasoline blends: Quantifying the potential benefits in 
the United States. Fuel, Volume 97: Pages 585–594. 
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 “…a mid-level ethanol-gasoline blend (greater than E20 and less than E40) appears to be 
attractive as a long-term future fuel for automotive engines in the U.S.” – AVL Powertrain 
Engineering and Ford Motor Company39  

 “There has been a big push in the industry for higher octane ratings…and it is proven that you 
can gain several percentage points in improvement of fuel economy if you have higher octane 
rating fuel available.” – Dean Tomazic, executive vice president and chief technology officer, FEV 
North America40 

  “One of the advantages without costing more on the vehicle side is to look at upping the 
minimum octane rating on the fuel and allowing OEMs to optimize compression ratio in 
engines, which would give us an efficiency benefit without actually adding cost to the whole 
system. …the addition of ethanol blends would be a good improvement to actually drive 
efficiency.” – David McShane, vice president of business development, Ricardo, Inc.41  

 “If we could optimize engines only to operate on premium fuel, then life would be a lot easier 
for us and we’d be able to see much more of a benefit in terms of efficiency. …if ethanol was 
widely available then our life as developers of gasoline engines would become easier.” – Paul 
Whitaker, powertrain & technical director, AVL Powertrain Engineering42 

 “(High octane fuels), specifically mid-level ethanol blends (E25-E40), could offer significant 
benefits for the United States. These benefits include an improvement in vehicle fuel efficiency 
in vehicles designed and dedicated to use the increased octane.” – Oak Ridge National 
Laboratory, Argonne National Laboratory, and National Renewable Energy Laboratory43 

 “Improvements to engine efficiency made possible with ethanol fuels may be a synergistic 
approach to simultaneous compliance with CAFE and RFS II. This presents a unique and 
infrequent opportunity to dramatically alter internal combustion engine operation by improving 
fuel properties.” – Oak Ridge National Laboratory44  

 “Several technologies beyond those considered by EPA and NHTSA might provide additional 
fuel consumption reductions for spark ignition engines or provide alternative approaches at 
possibly lower costs for achieving reductions in fuel consumption by 2025. These technologies 
include…higher compression ratio with higher octane regular grade gasoline…” – National 
Research Council45 

 “[T]ransitioning the fleet to higher-octane gasoline would result in significant economic and 
environmental benefits through reduced gasoline consumption.” – Massachusetts Institute of 
Technology46 

                                                           
39

 Stein, R., Anderson, J., and Wallington, T., "An Overview of the Effects of Ethanol-Gasoline Blends on SI Engine 
Performance, Fuel Efficiency, and Emissions," SAE Int. J. Engines 6(1):470-487, 2013, doi:10.4271/2013-01-1635. 
40

 Detroit Public Television. Aug. 21, 2016. Autoline with John McElroy. Episode #2026 (“Deep Freeze for the ICE?”) 
41

 Id. 
42

 Id. 
43

 Oak Ridge National Laboratory. July 2016. Summary of High-Octane, Mid-Level Ethanol Blends Study. ORNL/TM-
2016/42. 
44

 Derek A. Splitter and James P. Szybist (2014) “Experimental Investigation of Spark-Ignited Combustion with High-
Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed” Energy & Fuels. 
45

 NRC. June 2015, at 2-84. 
46

 R.L. Speth et al. Economic and environmental benefits of higher-octane gasoline. Environ Sci Technol. 2014 Jun 
17;48(12):6561-8. doi: 10.1021/es405557p 

http://www.ncbi.nlm.nih.gov/pubmed/24870412
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VII. Recommendations for EPA and NHTSA’s “Proposed Determination” and remainder of MTE 
process 

EPA and NHTSA state that feedback received in response to the Draft TAR will inform the agencies’ 
“Proposed Determination” of whether the 2022-2025 standards are appropriate. Based on the forgoing 
comments in this document and the overwhelming preponderance of evidence supporting introduction 
of HOLC fuels as a means of increasing engine efficiency and reducing emissions, we offer the following 
recommendations for the agencies’ consideration:  

a. EPA and NHTSA should treat engines and fuels as integrated systems during the MTE 
process and beyond 

Liquid fuels and IC engines combine to form highly integrated systems. One component of this system is 
ineffectual without the other. Thus, any effort to examine the potential impacts of new and emerging 
advanced IC engine technologies on fuel economy and emissions must also take into account the effects 
of the fuels being used by the engines. Unfortunately, fuels are little more than an afterthought in the 
TAR, and where fuel-related assumptions were unavoidable, the TAR is unclear, inconsistent, conflicts 
with current and future expectations about in-use liquid fuels, and ignores the influence of other 
policies—like the RFS—on the composition and mix of motor fuels. 

RFA strongly recommends that EPA and NHTSA follow the lead of DOE’s Co-Optima program by treating 
engines and fuels as a system in the Proposed Determination and any further analysis supporting the 
MTE process. Specifically, the agencies should give consideration to the liquid fuel properties—such as 
octane—that can best enable near term, low-cost advances in IC engine technologies. 

b. As a sensitivity case to the central compliance demonstrations, the agencies should 
assess the fuel economy and emissions impacts associated with using HOLC fuels in 
advanced IC engines with high compression ratios 

Numerous independent studies have documented the fuel economy and emissions benefits resulting 
from the use of HOLC fuels in HCR and other advanced IC engine technologies. These analyses 
consistently show HOLC fuels (98-100 RON) in HCR engines produce efficiency gains and CO2 reductions 
in the range of 4-10% compared to the use of regular grade 87 AKI gasoline in today’s IC engines, 
depending on drive cycle and other factors. Additional upstream GHG emissions reductions mean 
ethanol-based HOLC fuels can reduce WTW emissions by 8-17% per mile if using today’s corn ethanol, 
and 16-31% per mile if using emerging cellulosic ethanol. 

EPA and NHTSA should examine a compliance demonstration scenario in which a significant portion of 
the LDV fleet uses 98-100 RON fuel in HCR engines. The agencies should further analyze the impact of 
various octane streams on the results of this scenario (i.e., compare a 98-100 RON mid-level ethanol 
blend to a 98-100 RON ethanol-free gasoline). Such analysis would greatly contribute to the 
understanding of the potential of HOLC fuels to multiply the efficiency and emissions benefits of 
advanced IC engine technologies. 

c. A comprehensive cost-benefit analysis of various CAFE/GHG compliance pathways 
including both engine and fuel technologies should be conducted. Such analysis should 
include a pathway for HOLC fuels in advanced IC engines 

The TAR provides the technical underpinnings for EPA and NHTSA’s Proposed Determination of whether 
the 2022-2025 CAFE and GHG standards are appropriate. The implementation of these standards will 
have significant ramifications for the nation’s economy and environment. The automotive sector will 
deploy billions of dollars in capital to develop and manufacture the technologies that ultimately will 
facilitate achievement of future fuel economy and GHG reduction standards. Consumers will feel the 
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impacts of these regulations as well, as automakers attempt to recoup some of their increased costs 
through higher retail prices for new automobiles. As discussed in these comments, the standards will 
also have impacts on fuel producers. 

Given the economic and environmental significance of the 2022-2025 fuel economy and emissions 
standards, we believe EPA, NHTSA and the White House Office of Management and Budget should 
undertake a comprehensive cost-benefit analysis of various technology pathways for meeting the 2022-
2025 standards. Critically, this analysis should include not just the engine and vehicle costs to 
manufacturers and consumers, but also the expected fuel costs over the life of the engine. Such analysis 
should be conducted for all of the various engine/vehicle technologies examined in the TAR and the 
corresponding fuels they use.  Such an analysis also bears relevance to EPA’s administrative authority to 
regulate octane, as EPA has stated it “…would have to show how the benefits of raising gasoline octane 
would justify the cost” in order to promulgate regulations requiring higher minimum octane.47  

d. EPA and NHTSA should ensure the Proposed Determination fully accounts for the Co-
Optima initiative’s recommendations for “candidate fuels” that best enable advanced 
IC engine technologies and maximize their efficiency 

A major near-term objective of the DOE’s Co-Optima initiative is to identify and characterize the 
behavior of new “candidate fuels” that can enable greater energy efficiency and reduced emissions in 
optimized engines. Upon identifying and characterizing the fuels that offer the greatest potential, DOE 
will examine the impact of the candidate fuels’ properties on engine design and the effects on 
performance, energy efficiency and emissions. Much of this work is already underway at DOE, and a 
recent report summarizing research efforts to date demonstrates that mid-level ethanol HOLC fuel 
blends offer great potential to improve efficiency and cut emissions in the near-term (Attachment B). 
However, DOE has not yet officially specified and characterized the candidate fuels that merit further 
research and testing. Once available, the MTE process should fully account for information from DOE 
pertaining to the candidate fuels best suited for use in new and emerging IC engine technologies. 

e. The agencies should “heed the call” for HOLC fuels. EPA and NHTSA should use the 
MTE process to establish the roadmap to broad commercial introduction of HOLC fuels 
in advanced IC engines beginning in 2025  

Consensus is building around the need for HOLC fuels to enable greater engine efficiency and reduced 
emissions. Automotive engineers and executives, government scientists, expert panels, and university 
researchers have called for a higher minimum octane rating for future fuels. These experts have clearly 
demonstrated that HOLC fuels would enable HCR engines and other advanced IC engine technologies, 
which in turn would improve engine efficiency and reduce emissions. 

However, without regulatory intervention or guidance, there is no guarantee that HOLC fuels will indeed 
be broadly available in the marketplace to enable advanced IC engine technologies to proliferate. Many 
of the stakeholders calling for the introduction of HOLC fuels have also called upon EPA to use its 
regulatory authority to establish a minimum octane rating for future gasoline. The Alliance of 
Automobile Manufacturers made such a request during the Tier 3 rulemaking. Meanwhile, the NRC 
recommended that “EPA and NHTSA should investigate the overall well-to-wheels CAFE and GHG 
effectiveness of increasing the minimum octane level and, if it is effective, determine how to implement 
an increase in the minimum octane level so that manufacturers would broadly offer engines with 

                                                           
47

 P. Machiele, EPA. May 5, 2015. “EPA’s Regulatory Authority to Address Octane.” Presentation to EPA Mobile 
Sources Technical Review Subcommittee. 
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significantly increased compression ratios for further reductions in fuel consumption.”48 Similarly, the 
attached Ricardo report states, “It is clear that implementing a high octane fuel standard would provide 
opportunity for increased engine efficiency and hence reduced greenhouse gases.” 

EPA clearly has the authority to regulate gasoline octane ratings, as octane has direct implications for 
emissions of CO2 and other pollutants. EPA has acknowledged this authority, stating that “CAA 211(c) 
provides EPA with broad and general authority to regulate fuels and fuel additives; this authority could 
be used to…‘control’…the octane level of gasoline.”49 While EPA has acknowledged it has the authority 
to regulate octane levels, the agency has suggested that the “time frame to complete all the steps [to 
implement octane regulations] could be ~10 years” and that “[e]ven if the rule were initiated now it 
would likely be a number of years before it could be implemented.”50 Chris Grundler, director of EPA’s 
office of transportation and air quality, recently confirmed that EPA is not likely to consider regulating 
gasoline octane levels before 2025.51 

Although RFA believes adoption of new regulations governing octane levels could be done relatively 
quickly (certainly more quickly than 10 years), EPA maintains that an extremely long lead time is 
required. Similarly, automakers would require a long planning horizon to adjust engineering and design 
activities in response to impending changes to fuel composition. Given the long lead time involved in 
effectuating changes to EPA regulations and automaker engineering and design plans, the agencies 
should indicate now the future direction of potential octane regulation and HOLC fuel introduction. That 
is, EPA and NHTSA should use the MTE process as an opportunity to respond to stakeholder outcry for 
HOLC fuels. The Proposed and Final Determinations should include the regulatory roadmap that the 
agencies, automakers and other stakeholders can follow to guarantee gasoline in 2025 and beyond has 
the necessary minimum octane rating to enable proliferation of advanced IC engine technologies that 
improve fuel efficiency and slash GHG emissions. 

 

Attachments: 

A: The Draft Technical Assessment Report: Implications for High Octane, Mid-Level Ethanol 
Blends. Ricardo, Inc. September 20, 2016. Project Number C013713 

B: Summary of High-Octane, Mid-Level Ethanol Blends Study. Oak Ridge National Laboratory. 
July 2016. ORNL/TM-2016/42 

C: Evaluation of Costs of EPA’s 2022-2025 GHG Standards With High Octane Fuels and Optimized 
High Efficiency Engines. AIR, Inc. September 16, 2016 
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 P. Machiele, EPA. May 5, 2015. “EPA’s Regulatory Authority to Address Octane.” Presentation to EPA Mobile 
Sources Technical Review Subcommittee. 
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51

 Society of Automotive Engineers. Aug. 3, 2016. GM, Honda execs agree: Higher octane gas needed to optimize 
ICE efficiency. http://articles.sae.org/14940/   
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EXECUTIVE SUMMARY 

Ricardo, Inc. was retained by the Renewable Fuels Association to conduct a detailed analysis 

of the Draft Technical Assessment Report (TAR), which is the first step in the Midterm 

Evaluation of Light-duty Vehicle Standards for Model Years 2022-2025.  A key objective of 

the analysis was to examine how and whether the TAR addresses fuels, and specifically 

whether it examines the potential use of high octane, mid-level ethanol blends (20-40% by 

volume) in optimized spark-ignition engines (e.g., high compression, turbocharged, 

downsized) to help OEMs achieve desired fuel economy and emissions standards. We also 

analyzed other literature to provide insight into the role that ethanol-based high octane fuels 

might play in facilitating increased fuel economy and reduced emissions under the federal 

standards. 

Our analysis found that fuels—and ethanol, specifically—are rarely discussed in the TAR in 

the context of helping automakers meet fuel economy and emissions standards. However, 

the TAR does examine in detail a number of advanced spark-ignition engine technologies  

that would clearly produce greater fuel economy and emissions benefits when using higher 

octane mid-level ethanol blends than regular gasoline. 

Ethanol has many beneficial properties when blended with gasoline for increasing the 

efficiency of spark-ignition engines. In a landmark automotive industry study, Stein, 

Polovina, Roth, et. al. showed that knock-limited performance can be increased by up to 5 

times with a high octane ethanol blend in a DI turbocharged engine.1 Significant performance 

increases such as this are the enablers for engine downsizing and compression ratio 

increases leading to efficiency improvements in future powertrain designs. The work went 

on to show that by redesigning the engine to take advantage of E30-100 RON fuel in an F150 

pickup truck greenhouse gases could be reduced 6% on the EPA test cycles and an even more 

impressive 9% in real world driving conditions.2 

Chow, Heywood and Speth3 at MIT also examined the benefits of a higher octane standard 

gasoline for the U.S. light-duty vehicle fleet and found “ultimately by redesigning vehicles to 

take advantage of premium gasoline, fleet fuel consumption and GHG emissions can be 

reduced by 4.5-6.0% (for 98 RON-100 RON, respectively) over the baseline case.” It is 

important to note that the Stein et al study found a greater benefit not due to the higher 

                                                        
1 Stein, R., Polovina, D., Roth, K., Foster, M. et al., "Effect of Heat of Vaporization, Chemical Octane, and 

Sensitivity on Knock Limit for Ethanol - Gasoline Blends," SAE Int. J. Fuels Lubr. 5(2):2012, doi:10.4271/2012-
01-1277. 
2 Leone, T., Olin, E., Anderson, J., Jung, H. et al., "Effects of Fuel Octane Rating and Ethanol Content on Knock, 
Fuel Economy, and CO2 for a Turbocharged DI Engine," SAE Int. J. Fuels Lubr. 7(1):2014, doi:10.4271/2014-
01-1228. 
3 Chow, E., Heywood, J., and Speth, R., "Benefits of a Higher Octane Standard Gasoline for the U.S. Light-Duty 
Vehicle Fleet," SAE Technical Paper 2014-01-1961, 2014, doi:10.4271/2014-01-1961. 
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octane rating of the fuel, but because of the greater charge cooling effect of ethanol over 

premium gasoline. 

Recently, automotive industry executives have added their voices to the engineering and 

academic communities calling for higher octane fuels. According to Bob Lee, Senior VP of 

Powertrain at FCA, “We need to find a new equilibrium. Whether it is 98 or 100 octane, we 

need something at that level.” Tony Ockelford, director of product and business strategy for 

Ford’s powertrain operations added, “100 RON has been on the table for a long time, the only 

way we will ever get there is to continue to push and work in a collaborative way.” 4 GM VP 

Dan Nicholson again spoke to this point at the 2016 CAR Management Briefing Seminars, 

saying, “higher octane fuels are the cheapest CO2 reduction on a well-to-wheels analysis. 

Fuels and engines must be designed as a total system.” Robert Bienenfeld, American Honda 

AVP, agreed that the industry must push for a higher fuel-octane “floor” in the U.S.5 

It is clear that implementing a high octane fuel standard would provide opportunity for 

increased engine efficiency and hence reduced greenhouse gases, and doing so by blending 

with ethanol provides an even greater benefit due to ethanol’s high heat of vaporation 

combined with the inherently low carbon footprint of ethanol.  Many of the technologies 

discussed in the Draft TAR, including ones with the highest expected penetration rates, could 

produce greater GHG and fuel economy benefits if paired with fuels offering higher octane 

ratings and an inherently higher charge cooling characteristic.  For example, GDI, 

turbocharging, downsizing, cylinder deactivation and higher compression ratio NA engines 

are all technologies that are relied upon in the Draft TAR as examples of pathways to meeting 

the 2025 GHG and fuel economy standards and which could benefit further from high octane 

mid-level ethanol blends such as E30. Hence high octane mid-level ethanol can be thought of 

as a technology which improves the performance of other key technologies already in the 

TAR for reducing greenhouse gases, and it does so with minimal or no incremental cost 

increase to the vehicle. 

In addition to the increased efficiency and reduced GHG emissions, ethanol could contribute 

to reducing the U.S. dependency on foreign oil and improving national energy security.  

                                                        
4 Truett, R., “Powertrain executives press for higher octane gasoline to help meet mpg, CO2 rules,” Automotive 
News, April 13, 2016. 
5 http://articles.sae.org/14940/ 

http://articles.sae.org/14940/
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THE DRAFT TECHNICAL ASSESSMENT REPORT: IMPLICATIONS FOR HIGH 

OCTANE, MID-LEVEL ETHANOL BLENDS 

1 INTRODUCTION 
The Renewable Fuels Association (RFA), the leading trade association for America’s fuel 

ethanol industry, has requested a detailed analysis of the Draft Technical Assessment Report 

(TAR), which is the first step in the Midterm Evaluation (MTE) of Light-duty Vehicle 

Standards for Model Years (MY)2022-2025.  This report is the result of the investigation 

completed to address the following objectives: 

 How and whether the TAR addresses fuels, and specifically the potential for the use 

of high octane, mid-level ethanol blends (20-40% by volume) in optimized spark-

ignition engines (e.g., high compression, turbo-charging, downsizing) to help OEMs 

achieve desired fuel economy and emissions standards? 

 Whether the TAR presents opportunities to expand and/or expedite the use of high 

octane mid-level ethanol blends? 

 Whether the technical assumptions and projections in the TAR regarding various 

automotive technologies and transportation fuels are consistent with industry 

expectations and other available information? 

 Discussion of what additional information may need to be developed and provided to 

the U.S. Environmental Protection Agency (EPA), National Highway Traffic Safety 

Administration (NHTSA), and California Air Resources Board (CARB) to ensure the 

agencies properly address the potential role of ethanol-based high octane fuels in 

optimized engines as the Midterm Evaluation progresses 

 Other issues that potentially impact fuel ethanol 

The investigation included the following steps: 

 Review and analyze TAR’s treatment of  alternative fuels and engine technologies that 

can benefit from high-octane and/or ethanol-containing fuels 

 Compare assumptions and projections in the TAR with those of industry expectations  

 Perform limited literature review on the effects of octane and ethanol fuel to increase 

engine efficiency 

 State findings and conclusions in an objective, written report 
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2 OVERVIEW OF THE TAR 

The U.S. EPA must determine, through the MTE whether the MY2022-2025 light-duty vehicle 

greenhouse gas (GHG) emissions standards, established in 2012 and known as the Final 

Rule-Making (FRM 2012), are still appropriate, given the latest available data and 

information. EPA’s MTE process could result in one of three possible outcomes: the 

standards are deemed appropriate and remain in place, the standards should be made less 

stringent, or the standards should be made more stringent.  

In the Draft TAR, EPA provides its initial technical assessment of the technologies available 

to meet the MY2022-2025 GHG standards and one reasonable compliance pathway, and 

NHTSA provides its initial assessment of technologies available to meet the augural MY2022-

2025 Corporate Average Fuel Economy (CAFE) standards and a different reasonable 

compliance pathway. The agencies’ independent analyses complement one another and 

reach similar conclusions:  

- A wider range of technologies exist for manufacturers to use to meet the MY2022-

2025 standards, and at costs that are similar to or lower than those projected in the 

2012 rule;  

- Advanced gasoline vehicle technologies will continue to be the predominant 

technologies, with modest levels of strong hybridization and very low levels of full 

electrification (plug-in vehicles) needed to meet the standards;  

- The car/truck mix reflects updated consumer trends that are informed by a range of 

factors including economic growth, gasoline prices, and other macro-economic 

trends. However, as the standards were designed to yield improvements across the 

light duty vehicle fleet, irrespective of consumer choice, updated trends are fully 

accommodated by the footprint-based standards.  

Additionally, while the Draft TAR analysis focuses on the MY2022-2025 standards, the 

agencies note that the auto industry, on average, is over-complying with the first several 

years of the National Program. The Draft TAR is organized as follows: 

Chapter 1 introduces the National Program and lays out the Midterm Evaluation process and 

timeline. 

Chapter 2 provides an overview of the agencies’ approach as a collaborative, data-driven, 

and transparent process. 

Chapter 3 summarizes recent trends in the Light-Duty vehicle fleet since the FRM 2012 with 

the key finding that auto manufacturers have over-complied with the GHG and CAFE 

standards program in the first three years, even in the face of record vehicle sales, a decline 

in the price of gasoline, and a rise in truck shares. Furthermore, it highlights technology 
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penetration rates with the increase of several gasoline engine and transmission technologies 

on track or ahead of the projections made in the 2012 FR and strong hybrid electric vehicles 

(HEVs) and plug-in hybrid electric vehicles (PHEVs) at low levels of uptake. 

Chapter 4 describes the baseline vehicle fleets and the reference fleet, which is the future 

fleet projection out to MY 2025; furthermore, it justifies the differences between EPA’s and 

NHTSA’s baseline fleets by stating that the combination of approaches strengthens the 

robustness of their results. Both fleets use the Energy Information Administration’s Annual 

Energy Outlook 2015 (AEO 2015) along with IHS-Polk projections as the basis for total 

vehicle sales to 2025. 

Chapter 5 gives an in-depth assessment of the state of vehicle technologies to improve 

vehicle fuel economy and reduce GHG emissions in terms of incremental cost and 

effectiveness as well as expected lead times for those technologies. One of the key findings is 

that there has been a “significant rate of progress made in automotive technologies over the 

past four years since the MY2017-2025 standards were established.” In addition the 

agencies assess future technology developments expected through MY2025. Technologies 

that were considered in the 2012 FR are re-evaluated plus new technologies that have been 

introduced since the 2012 FR was written or are experiencing noticeable penetration when 

none had been anticipated, such as higher compression ratio engines or greater penetration 

of Continuously Variable Transmissions (CVTs). There are other technologies under 

development that are expected to be a part of the fleet mix before 2025 such as 48V mild 

hybrids.  Chapter 5 alone comprises nearly half of the total Draft TAR volume at 588 out of 

1217 pages and includes 615 references. 

Chapter 6 reviews issues around consumer acceptance of fuel-saving and emission-reducing 

technologies and finds “that it is possible to implement these technologies without 

significant hidden costs.” In other words, “the reduced operating costs from fuel savings over 

time are expected to far exceed the increase in up-front vehicle costs.” 

Chapter 7 discusses the effects of employment in the automotive sector, concluding that “the 

net effect of the standards on employment is likely to be small compared to macroeconomic 

and other factors affecting employment.” 

Chapter 8 assesses the estimated overall crash safety impacts of the MY2022-2025 standards 

which stem primarily from the weight reduction that is expected to be a part of meeting those 

standards. This is a critical piece of NHTSA’s work as they are the nation’s watchdog for 

vehicle safety as well as fuel economy. 

Chapter 9 looks at the status of the infrastructure for alternative fueled vehicles, including 

flex fuel vehicles that may operate on high-ethanol blends such as E85. However, the “two 
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technologies the agencies believe will be important for achieving longer-term climate and 

energy goals [are] plug-in electric vehicles (PEVs) and fuel cell electric vehicles (FCEVs).” 

E85 and natural gas infrastructure is scarcely discussed in this chapter, as most of the focus 

is on electrical charging infrastructure. As concluded in the FRM 2012, EPA believes only “a 

very small percentage of PEVs” will be needed to meet the MY2025 standards, and “that 

infrastructure is progressing sufficiently.” 

Chapter 10 describes the economic and other inputs (such as real world fuel economy/GHG 

emissions gap [to test cycle numbers], vehicle miles traveled, energy security, the social cost 

of carbon emissions and others) used in the agencies’ analyses. 

Chapter 11 provides an overview of “a wide range of optional compliance flexibilities” 

offered by the national program to manufacturers to allow for consumer choice while 

spurring technology development, reducing compliance costs and achieving significant GHG 

and oil reductions. 

Chapters 12 and 13 get to the bottom line and show the expected outcomes of the national 

program, namely the 2025 average light-duty vehicle fuel economy is expected to be 46.3 

mpg actual or 50.8 mpg-equivalent (using only tailpipe improvements and no flexibilities) 

for a 52/48% car/truck mix and fuel prices as per the reference case from AEO 2015, and 

the CO2 output is expected to be 175 g/mi.  Table ES-1 from the executive summary (without 

footnotes) is reprinted here: 

 

The agencies reiterate again their position “that the MY2022-2025 standards can be 

achieved largely through the use of advanced gasoline vehicle technologies with modest 

penetrations of lower cost electrification (like 48 volt mild hybrids…) and low penetrations 

of higher cost electrification (like strong hybrids…).” The agencies also hint at the possibility 

that they are more likely to increase the stringency of the standards than not by noting that 

due to the rapid pace of innovation “the agencies may consider effectiveness and cost of 

additional technologies as new information… becomes available for further steps of the 

Midterm Evaluation.” 

Secondly, they conclude that average cost per vehicle of meeting the MY2025 standards is 

$894 - $1017 for EPA’s analysis of the GHG program and $1245 for NHTSA’s analysis of the 
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CAFE program, noting these are incremental costs beyond those incurred for meeting the 

MY2021 standards. For comparison, EPA’s assessment in the 2012 FR was $1070, or $53 - 

$176 higher than the Draft TAR results now declare. This is another indication that the 

agencies may be leaning more towards increasing the stringency of the standards at the 

conclusion of the MTE. 

Thirdly, EPA and NHTSA give their views as to possible penetration rates for select 

technologies needed to comply with the MY2025 standards in Table ES-3, reprinted here. 

 

It is interesting to note that the biggest disparities (in terms of absolute percentages) are for 

turbocharged downsized engines and for high compression ratio naturally aspirated (NA) 

engines; however, both of these technologies are ones which would benefit from a 

meaningful increase in the octane rating of standard-grade gasoline fuels. 

Fourthly, EPA analysis indicates a net lifetime consumer savings (incremental vehicle cost 

minus incremental fuel savings) of $1460 - $1620 with a 5-5½ year payback period; NHTSA 

analysis shows a potential savings of $680 per vehicle with a 6½ year payback. 

Finally, the agencies project the societal benefits resulting from the National Program. The 

EPA estimates that the standards could reduce national GHG emissions by 540 million metric 

tons (MMT) and reduce oil consumption by 1.2 billion barrels over the lifetimes of MY 2021-

2025 vehicles; NHTSA estimates a national GHG emissions reduction of 748 MMT and 1.6 

billion barrels of oil saved under the augural MY2022-2025 CAFE standards for MY2016-

2028 vehicles.  

These GHG and oil consumption reductions would come at a cost to industry estimated as 

$34 - $38 billion, but result in consumer fuel savings of $89 billion. All told, the net societal 

benefits are projected at $90 - $94 billion according to primary EPA analysis. NHTSA comes 
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to a similar net benefit of $88 billion with its primary analysis but uses higher industry costs 

($87 billion) to implement the vehicle program in MY2016-2028 and greater fuel savings 

($120 billion). 

3 THE TAR’S IMPLICATIONS FOR MOTOR FUELS 

A major conclusion in the executive summary of the Draft TAR is that the agencies expect 

“advanced gasoline vehicle technologies will continue to be the predominant technologies … 

needed to meet the standards.” By adding to that the statement “with modest levels of strong 

hybridization and very low levels of full electrification (plug-in vehicles)” they relegate 

alternative fuels in general to a very minor role. And in further stating that the “two 

technologies the agencies believe will be important for achieving longer-term climate and 

energy goals – plug-in electric vehicles (PEVs) and fuel cell electric vehicles (FCEVs)” they, 

to a large extent, dismiss any direct discussion around the benefits that high-octane mid-

level ethanol blends could play in helping the country achieve these energy efficiency goals, 

not to mention helping to meet the goals of the Renewable Fuel Standard (RFS) program. 

On the other hand, many of the technologies that are discussed in the Draft TAR, including 

the ones with the highest expected penetration rates, could produce greater GHG and fuel 

economy benefits if paired with fuels offering higher octane ratings than contemplated by 

EPA and NHTSA for the agencies’ modeling exercises. Thus, the TAR implicitly makes a case 

for increased use of higher octane fuels, such as mid-level ethanol blends like E25 or E30. 

For example, gasoline direct injection (GDI) engines that are turbocharged and downsized 

are projected to be used in ⅓ - ½ of the vehicle fleet in MY20256, up from 18% in MY20157, 

and they offer a GHG benefit ranging from 10% to nearly 12%8.  These downsized, boosted 

engines running on an E30 blend and having their compression ratios increased 3.0 units 

could gain an additional 6% in efficiency compared to running on today’s E10 gasoline.9   

Also note that in their benchmarking of the Mazda SkyActiv-G engine, the EPA used both 88 

AKI LEV III E10 fuel as well as 93 AKI Tier 2 certification gasoline “to investigate if there was 

more efficiency to be gained from higher octane.”  Without making any further modifications 

                                                        
6 Draft TAR, pES-10, Table ES-3 
7 Draft TAR, p5-19 
8 Draft TAR, p5-290, Table 5.64 depending on the vehicle application according to the latest analysis done for 
the MTE 
9 Leone et al in SAE 2014-01-1228 estimated a 6% CO2 emissions reduction on the fuel economy test cycle in 
an F150 pickup with the 3.5L EcoBoost engine at 13:1 compression ratio on E30 gasoline and a 9% reduction 
over the more aggressive US06 drive cycle. 
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to the engine or controls, they found up to a 3% gain in brake thermal efficiency by running 

on the higher octane fuel.10  

In addressing the engine maps created for NHTSA’s updated analysis in the TAR, NHTSA also 

noted that naturally-aspirated engines were calibrated on 87 AKI fuel while turbocharged 

engines were calibrated on 93 octane fuel. The fuel economy modeling results were later 

adjusted for differences in heating values between the fuels. 11 

Section 3 of this report highlights sections in the Draft TAR that describe the technologies 

(including engine, transmission and hybrid vehicles) that do have the potential for benefiting 

from using high octane mid-level ethanol blends. 

3.1 Engines 

3.1.1 GDI, Turbocharging, Downsizing, Cylinder Deactivation (TAR Sec 5.2.2.7)  

These technologies are used to increase the average load on the engine, and therefore make 

it more prone to knocking. Because the engine tends to run more often at or near a knock-

limited condition, it can take advantage of a high octane mid-level ethanol blend. Ethanol 

with its high octane rating, high sensitivity (S = RON – MON; where RON stands for research 

octane number and MON stands for motor octane number), and high heat of vaporization 

can be used in mid-level gasoline blends to further improve the efficiency of engines 

employing this technology most effectively by allowing their compression ratios to be raised.  

Ethanol allows for efficiency gains even if the compression ratio is not increased by allowing 

the spark timing to be advanced when operating under knock-limited conditions.12 

GDI is the most rapidly expanding technology with market penetration going from 2.3% in 

MY2008 to over 45% in MY2015 as shown in Figure 1.13  Figure 2 shows that the agencies 

expect its penetration to continue increasing out through MY2021 and into MY2025, and for 

the penetration of turbocharged, downsized engines to accelerate to the point that it matches 

GDI penetration by 2021. Turbocharged engines have also grown rapidly and the two are 

often employed together in a downsized engine package because the in-cylinder charge 

cooling effect from GDI helps to mitigate the knocking tendency.  Cylinder Deactivation is 

used to disable some (usually ½) of the cylinders so that the active cylinders carry twice the 

load, and the control capability is evolving to the point where cylinders can be disabled on a 

cycle-by-cycle basis so that it can be applied to smaller engines and engines with an odd 

number of cylinders. 

                                                        
10 See Figure 8 and discussion of Ellis et. al. 
11 TAR p5-504 
12 This is described in greater detail in section 5 of this report 
13 TAR p3-12 
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FIGURE 1 LIGHT DUTY VEHICLE TECHNOLOGY PENETRATION SHARE SINCE THE 2012 FINAL RULE (TAR FIGURE 3.10) 

 

FIGURE 2 TECHNOLOGY CHANGES SINCE MY2009 (TAR FIGURE 3.11) 
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3.1.2 Atkinson cycle (TAR Sec 5.2.2.9) 

Atkinson cycle engines have increased geometric compression ratio and they use either very 

early or very late intake valve closure to effectuate a lower compression ratio and avoid 

knock while maintaining a high expansion ratio.  “Prior to 2012, the use of naturally-

aspirated Atkinson Cycle engines has been limited to HEV and PHEV applications where the 

electric machine could be used to boost torque output, particularly at low engine speeds…. 

Since 2012, Atkinson Cycle engines have been introduced into non-hybrid applications.”14  In 

the same way that high octane mid-level ethanol blends can be used to improve the efficiency 

of gasoline turbocharged direct injection (GTDI) engines it can be effectively used in 

Atkinson cycle engines. 

3.1.3 Miller Cycle (TAR Sec 5.2.2.10) 

In the TAR, Miller cycle is described essentially as a boosted Atkinson cycle. 15  VW has 

introduced Miller cycle engines in the EA888 engine for Audi vehicles and also the smaller 

EA211 TSI evo engine for VW vehicles in Europe first and then the US.  Just as for Atkinson 

cycle engines, high octane mid-level ethanol blends can be used for further efficiency gains 

in Miller cycle engines. The agencies demonstrate that these technologies have already 

entered the market, stating that “As of MY2017, all of Mazda's engines for the U.S. market are 

either Atkinson Cycle or Miller Cycle (boosted Atkinson).”16 

3.1.4 VCR & Other Longer Term Engine Technologies (TAR Sec 5.2.2.14) 

Variable Compression Ratio (VCR) is a means to offer a range of compression ratios so that 

at lighter load conditions a high compression ratio can be used to effect efficiency gains, and 

at higher load conditions a low compression ratio can be used to avoid knock. Nissan recently 

announced its intention to produce a turbocharged engine with variable compression ratio,17 

as a signal coming well ahead of expectations in the TAR.  While VCR technology would 

seemingly obviate the need for higher octane fuels, mid-level ethanol blends would still offer 

a benefit by allowing the engines to operate at high compression ratio more frequently 

and/or allowing the engine to be further downsized. 

Also in this section of the TAR is tucked away mention of the DOE Co-Optimization of Fuels 

and Engines (Co-Optima) 18 program which holistically treats engines and the fuels they burn 

as an integrated system in order to improve the efficiency of motor vehicles and also to 

advance the use of renewable fuels such as high octane mid-level ethanol blends. 

                                                        
14 TAR p5-31 
15 TAR pp5-33 & 5-34 
16 TAR p5-31 
17 http://www.autoblog.com/2016/08/14/infiniti-vc-t-engine-variable-compression-official/ 
18 TAR pp5-41 & 5-42 

http://www.autoblog.com/2016/08/14/infiniti-vc-t-engine-variable-compression-official/
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3.2 Transmissions 

3.2.1 Trans Shift Strategies and Torque Converter Lockup Strategy (TAR Sec’s 5.2.3.10 

& 5.2.3.11) 

Transmissions have the ability to significantly impact vehicle efficiencies by changing the 

speed and load at which the engine operates. Transmissions with a greater number of gear 

ratios and CVT transmissions achieve fuel economy gains by causing the engine to operate 

in its peak efficiency region more frequently. By reducing the knocking tendency of engines 

at or near their peak efficiency regions, high octane mid-level ethanol blends can further 

increase the GHG and fuel economy benefits of vehicles utilizing improved transmission shift 

and torque convertor lockup strategies. 

3.3 Hybrid Electric Vehicles 

3.3.1 Mild, Strong, & Plug-in Hybrids (TAR Sec’s 5.2.4.3.2, 5.2.4.3.3 & 5.2.4.3.4) 

Hybrid Electric Vehicles (HEVs) improve vehicle fuel efficiency through several mechanisms 

such as the ability to recover kinetic energy that would otherwise be lost (i.e. regen braking), 

which gives many hybrid vehicles their characteristic higher fuel economy on the ‘city’ FTP 

drive cycle than the ‘highway’ HFET. All hybrid vehicles (when operating on engine power 

for PEVs) and ‘strong’ HEVs especially operate more frequently at the engine’s peak 

efficiency region, and for this reason would be able to capitalize on high octane mid-level 

ethanol blends’ capability for further improving the efficiency and fuel economy and 

reducing GHG emissions. Hybrids that utilize Atkinson cycle engines are also subject to the 

potential gains from high-octane ethanol blends. 

4 WHAT THE INDUSTRY IS SAYING ABOUT HIGH OCTANE FUELS 

One area that leadership of the OEMs has started addressing publicly is that of calling for a 

higher octane fuel standard, as discussed in detail in Sec. 5.4 of this report. In a panel 

discussion at the 2016 SAE World Congress powertrain executives said they need higher 

octane gasoline … to meet the government’s strict 2025 fuel economy and CO2 standards.19 

According to Bob Lee, Senior VP of Powertrain at FCA, “We need to find a new equilibrium. 

Whether it is 98 or 100 octane, we need something at that level.” Tony Ockelford, director of 

product and business strategy for Ford’s powertrain operations added, “100 RON has been 

on the table for a long time, the only way we will ever get there is to continue to push and 

work in a collaborative way.” In August 2016, GM VP Dan Nicholson again spoke to this point 

at the 2016 CAR Management Briefing Seminars, saying, “higher octane fuels are the 

                                                        
19 Truett, R., “Powertrain executives press for higher octane gasoline to help meet mpg, CO2 rules,” Automotive 
News, April 13, 2016 
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cheapest CO2 reduction on a well-to-wheels analysis. Fuels and engines must be designed as 

a total system.” Robert Bienenfeld, American Honda AVP, agreed that the industry must push 

for a higher fuel-octane “floor” in the U.S.20 

5 OTHER WORKS ADDRESSING ETHANOL’S POTENTIAL ROLE IN HIGH 

OCTANE FUELS 

In this section we will first of all quantify the efficiency gains that can be had from increasing 

compression ratio, also explaining why compression ratios cannot be increased with existing 

engine technologies using our current standard gasoline octane ratings and even more so 

with engine technologies that are expected to be increasingly utilized in the future, such as 

downsizing and boosting. We will also explain the role of Direct Injection (DI) in allowing 

compression ratios to be increased while maintaining, or even increasing, the power and 

torque output of an engine, and the interaction with the fuel characteristics, namely its Heat 

of Vaporization (HoV) and sensitivity. Finally, we will look at the impact that high octane, 

mid-level ethanol blends can have on fuel economy and CO2 reduction. 

5.1 Effect of Compression Ratio on Efficiency 

Compression ratio (CR) is fundamentally the key variable engine designers have to play with 

for impacting efficiency as we learn from the equation for an ideal gas thermodynamic cycle: 

𝜂 = 1 −
1

𝐶𝑅𝛾−1
 

Where η is the efficiency of the cycle and γ is the ratio of specific heats of the working fluid. 

This equation teaches that increasing CR will continually increase efficiency forever; 

however, there are practical limits in applying this ideal equation to real engines, foremost 

of which is the tendency of a spark-ignition engine to knock.  

The tendency to knock can be minimized by numerous engine design choices and control 

strategies, but is also critically impacted by the octane rating or the anti-knock index (AKI) of 

the fuel. The AKI rating of a fuel comes from the two primary octane ratings, RON and MON, 

which are measurements of a fuels knocking tendency in engines running under different 

conditions. One of the most important differences in the conditions is the location of the fuel 

injection and the amount of heating and vaporization it undergoes before entering the 

cylinder. This is important because today’s modern high-efficiency engines often employ 

direct injection which experiences no heating and vaporization before entering the cylinder, 

so understanding the differences between the RON test and the MON test allows one to better 

                                                        
20 http://articles.sae.org/14940/  

http://articles.sae.org/14940/
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project a fuel’s anti-knock qualities for DI engines. This difference is expressed as the 

sensitivity of a fuel: 

𝑆 = 𝑅𝑂𝑁 −𝑀𝑂𝑁 

Studies have shown that the RON test more closely represents the conditions found in 

today’s boosted, DI engines, and in fact since the air is preheated and the fuel injected far 

upstream in the MON test, the MON rating is actually a counter-indication of knocking 

tendency in boosted DI engines. In other words, a fuel’s RON plus its sensitivity gives a better 

indication of knocking tendency.  According to Kalghatgi et. al. “the true anti-knock quality 

of a gasoline is best described by an Octane Index, OI… which is defined as OI = (1-K)*RON + 

K*MON = RON – K*S… [where] downsized turbocharged engines of the next generation have 

negative values of K.”21  

Smith, Heywood and Cheng at MIT have stated: “The type of fuel chosen can have a profound 

impact on knock suppression through its beneficial chemical characteristics and the 

compounding impact of its evaporation with direct injection. High octane gasoline and 

alcohol fuels have been proven to reduce the propensity to knock due to their molecular 

structure…. In addition alcohol-based fuels have a higher heat of vaporization than 

traditional gasoline fuels, resulting in even lower charge temperatures, further reducing the 

probability of knock.”22  

Recognizing not only the importance of a fuel’s ‘chemical’ octane rating as expressed by its 

RON and its sensitivity, but also a fuel’s heat of vaporization to further reduce the propensity 

to knock in DI engines, Smith, Heywood and Cheng surveyed recent technical papers 

covering a “broad range of engine designs at a wide range of operating conditions” to 

determine the impact that CR has on efficiency; a summary of their results is shown below 

in Figure 3. 

                                                        
21 Kalghatgi, G., Head, R., Chang, J., Viollet, Y. et al., "An Alternative Method Based on Toluene/n-Heptane 

Surrogate Fuels for Rating the Anti-Knock Quality of Practical Gasolines," SAE Int. J. Fuels Lubr. 7(3):2014, 
doi:10.4271/2014-01-2609. 
22 Smith, P., Heywood, J., and Cheng, W., "Effects of Compression Ratio on Spark-Ignited Engine Efficiency," 

SAE Technical Paper 2014-01-2599, 2014, doi:10.4271/2014-01-2599. 
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FIGURE 3 AVERAGE RELATIVE BRAKE EFFICIENCY CHANGE VERSUS COMPRESSION RATIO FOR ALL DATA SETS WITH RELATIVE 

VALUES FROM UNIT CHANGES IN COMPRESSION RATIO LABELLED.23 

What is important to note is that increasing compression ratio can be expected to increase 

brake thermal efficiency of an SI engine but does so with ever diminishing gains. 

5.2 Effect of Heat of Vaporization, Chemical Octane and Sensitivity 

A landmark paper by Stein et. al. carefully examined and delineated the effects of chemical 

octane, heat of vaporization, and sensitivity of ethanol-gasoline blends on knock in a modern 

boosted DI engine. 24   First, the chemical effect was cleanly separated from the heat of 

vaporization, or “charge cooling” effect, by comparing performance of a neat gasoline (E0) 

with an E50 blend made from the same 88 RON gasoline blendstock using an upstream fuel 

injection (UFI) system. Secondly, the paper compared performance of the E50 blend injected 

upstream and completely vaporized with the UFI system against performance of the E50 

blend directly injected into the cylinder (DI) where all of the vaporization occurs in the 

cylinder.  Figure 425 below shows that at equal knock-limited combustion phasing (illustrated 

for example by the black arrows at 16 deg aTDC CA50 timing) the maximum achievable 

normalized torque output (represented on the x-axis as NMEP or net mean effective 

pressure) increases from 5 bar NMEP to 15 bar solely due to the chemical octane increase of 

the E50 blend over the E0 gasoline. The second black arrow points out the increased charge 

cooling effect results from ethanol’s higher HoV and sensitivity when it is injected directly 

                                                        
23 Taken from Figure 6 of Smith et. al. 
24 Stein, R., Polovina, D., Roth, K., Foster, M. et al., "Effect of Heat of Vaporization, Chemical Octane, and 

Sensitivity on Knock Limit for Ethanol - Gasoline Blends," SAE Int. J. Fuels Lubr. 5(2):2012, doi:10.4271/2012-
01-1277. 
25 Taken from Figure 13 of Stein et. al. 
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into the cylinder; for contrast the UFI – DI difference for E0 gasoline is virtually non-existent 

as shown by the green and light grey lines. While the absolute values of the chemical and 

charge cooling effects vary with CA50 timing, it is noted that they are similar in magnitude 

for an E50 blend. 

 

FIGURE 4 SEPARATION OF CHEMICAL OCTANE AND CHAGE COOLING EFFECTS ON KNOCK LIMIT FOR B88E5—R105 AT 10:1 CR 

AND 1500 RPM. 

Importantly, but not surprisingly, the paper conclusively demonstrates that blending lower 

octane gasoline with ethanol to produce finished fuels with equivalent low RON is of no 

benefit in extending the knock-limited torque or NMEP of an SI engine.26  The message here 

is that greater efficiency gains can be obtained by increasing the octane ratings of finished 

fuels by blending in ethanol rather than using ethanol to allow a drop in the RON of the 

gasoline blendstock. Even greater gains can be realized from a high octane ethanol blend 

over a neat gasoline with equivalent RON as was shown for the 97 and 99 RON fuel series.27 

These experiments clearly reveal the mechanisms by which engines can achieve significantly 

enhanced torque levels using high octane ethanol blends, thereby laying the foundation 

stones for further efficiency gains to technologies such as GDI, turbocharging, downsizing 

and cylinder deactivation that are at the heart of the technology pathways used for attaining 

                                                        
26 Stein et. al. show in Figure 23 that low octane fuels such as regular pump grade gasoline with a RON of 93 
exhibit similar knock-limited performance for the tested E0, E10 and E20 blends.  
27 Figures 21 and 22 of Stein et. al. show higher octane blends give improved performance due to the charge 
cooling effect with higher ethanol levels of E10, E20 and E30. 
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the CO2 reductions and FE improvements expected in the TAR. Efficiency gains from ethanol 

blends can be expected for current GDI boosted downsized engines (via less spark retard at 

moderate loads and less enrichment at high loads), and even greater efficiency gains are to 

be expected with future engines employing a greater degree of downsizing and technologies 

such as DI Atkinson cycle and Miller cycle, by taking advantage of the higher torque output 

capability that is enabled by ethanol blends. 

5.3 Fuel Economy and CO2 Benefits from High Octane Mid-Level Ethanol 

Blends 

Further work was performed using the same combustion system developed above. This time, 

however, a 3.5L V6 Ford EcoBoost gasoline turbocharged engine was used and the engine 

dynamometer data was modeled in an F150 pickup truck to quantify the vehicle fuel 

economy gains and CO2 reductions made possible with splash-blended ethanol-gasoline 

mixtures.28  Engine performance was compared for regular-grade E10 fuel having measured 

values for AKI of 87 and RON of 91, E20 with 96 RON (AKI = 91), and E30 with 101 RON (AKI 

= 94) on the production engine at 10:1 CR and with the engine modified to 11.9:1 CR. The 

engine dynamometer data indicated efficiency gains of 4-5% for a 10% increment of ethanol 

splash blended in the base blendstock, which allowed for a CR increase of 1.9 units at 

equivalent output capability.29 

Detailed vehicle simulation of an F150 pickup showed that a 4.8% reduction in CO2 emissions 

was possible on the combined EPA metro and highway test cycles; similar results were 

obtained for the more aggressive US06 drive cycle. 30 Furthermore, since range between fill-

ups is an important customer satisfaction index, and E20 has roughly 4% lower energy 

density than E10 on a per-gallon basis, miles-per-gallon fuel economy was calculated for the 

fuel/engine combinations above. As expected, range projections for E20 fuel and 11.9 CR 

came out equal or slightly better than E10 fuel at 10:1 CR.31 

A second paper published the results from testing an E30 ethanol fuel blend in the same 

engine but with CR set to 13:1 and projecting fuel economy in the same F150 pickup truck 

but with the new engine/fuel test results.32 The E30 blend had measured RON of 101 and 

                                                        
28 Jung, H., Leone, T., Shelby, M., Anderson, J. et al., "Fuel Economy and CO2 Emissions of Ethanol-Gasoline 
Blends in a Turbocharged DI Engine," SAE Int. J. Engines 6(1):2013, doi:10.4271/2013-01-1321. 
29 See Figure 12 and the Summary/Conclusions of Jung et. al. 
30 See Figure 15 of Jung et. al. 
31 See Figure 16 of Jung et. al. 
32 Leone, T., Olin, E., Anderson, J., Jung, H. et al., "Effects of Fuel Octane Rating and Ethanol Content on Knock, 
Fuel Economy, and CO2 for a Turbocharged DI Engine," SAE Int. J. Fuels Lubr. 7(1):2014, doi:10.4271/2014-
01-1228. 
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AKI of 94 which allowed the CR of the engine to be increased to 13:1 while maintaining 

equivalent full load performance as the baseline engine at 10:1 burning the baseline E10 fuel. 

Vehicle simulation of the F150 pickup showed that a 6% improvement in CO2 emissions on 

the CAFE fuel economy test was enabled by the high octane E30 blend and a more impressive 

9% gain on the US06 drive cycle which is better at representing the real world behavior of 

typical drivers in the US.33 In the real world driving scenario, vehicle range was again similar 

or better than on E10 even though E30’s volumetric energy density is down by almost 8%.34  

5.4 Impact of Higher Octane Rating and Ethanol Content on U.S. Fuel 

Economy and CO2 Emissions 

Chow, Heywood and Speth at MIT also examined the benefits of a higher octane standard 

gasoline for the U.S. light-duty vehicle fleet and found “ultimately by redesigning vehicles to 

take advantage of premium gasoline, fleet fuel consumption and GHG emissions can be 

reduced by 4.5-6.0% (for 98 RON-100 RON, respectively) over the baseline case, where no 

additional higher-octane vehicles are introduced.”35 

The effect of compression ratio, fuel octane rating, and ethanol content on spark-ignition 

engine efficiency was studied and published in the peer-reviewed journal “Environmental 

Science & Technology” a critical review article authored by scientists and engineers from 

Ford, GM, and FCA who are recognized world-wide for their expertise in the interaction of 

engines and fuels.36 They found that higher octane ratings for regular-grade gasoline are an 

enabler for higher compression ratio, downsizing, turbocharging, downspeeding, and 

hybridization technologies and that “increasing compression ratios for future SI engines 

would be the primary response to a significant increase in fuel octane ratings.” 

Furthermore stating, “higher ethanol content is one available option for increasing the 

octane ratings of gasoline and would provide additional engine efficiency benefits for part 

and full load operation,” as shown in Figure 5. 

                                                        
33 See Figure 22 of Leone et. al. 
34 See Figure 23 of Leone et. al. 
35 Chow, E., Heywood, J., and Speth, R., "Benefits of a Higher Octane Standard Gasoline for the U.S. Light-Duty 

Vehicle Fleet," SAE Technical Paper 2014-01-1961, 2014, doi:10.4271/2014-01-1961. 
36 Leone, T., Anderson, J., Davis, R., Iqbal, A., Reese, R., Shelby, M., Studzinski, W., “The Effect of Compression 

Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency,” Environ. Sci. Technol. 49, 
10778–10789 (2015) doi:10.1021/acs.est5b01420. 
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FIGURE 5 ENGINE EFFICIENCY GAINS FROM INCREASING FUEL OCTANE RATING THROUGH ETHANOL CONTENT AND 

COMPRESSION RATIO INCREASES FOR A GTDI ENGINE WITH MODEST DOWNSIZING.37 

In addition to technical experts from the industry and academia defining the benefits 

available from high octane mid-level ethanol blends, SAE has noted that auto industry 

executives are also making public statements regarding the engine efficiency benefits.38 GM 

and Honda executives said that raising the octane level of pump gasoline in the U.S. is integral 

to optimizing advanced combustion engine now in development. At the 2016 CAR 

Management Briefing Seminars Dan Nicholson, VP of Global Propulsion Systems at GM, said, 

“higher octane fuels are the cheapest CO2 reduction on a well-to-wheels analysis. Fuels and 

engines must be designed as a total system.” Robert Bienenfeld, Assistant VP of Environment 

and Energy Strategy at American Honda agreed the industry must push for a higher fuel-

octane floor in the U.S. prompting positive comments from EPA Director Chris Grundler. 

Although fuel changes are not part of the TAR, Grundler noted that the EPA is participating 

in the U.S. Dept. of Energy’s Co-Optima program and has a group working on gasoline octane 

levels of future fuels. The TAR itself in fact notes that the aim of the Co-Optima program is to 

improve the near-term efficiency of engines.39 

5.5 DOE’s Summary of High-Octane, Mid-Level Ethanol Blends Study 

Going beyond, and intermingled with, the Co-Optima initiative, the DOE has recently 

published a summary of its efforts investigating the potential of High Octane Fuel (HOF) with 

25-40% ethanol blends. 40   DOE investigators came together from Oak Ridge National 

                                                        
37 Taken from Leone, Anderson, Davis, et. al. 
38 http://articles.sae.org/14940/ 
39 TAR p5-41 
40 Theiss, T., Alleman, T., Brooker, A., Elgowainy, A., Fioroni, G., Han, J., Huff, S., Johnson, C., Kass, M., Leiby, P., 
Uria Martinez, R., McCormick, R., Moriarty, K., Newes, E., Oladosu, G., Szybist, J., Thomas, J., Wang, M., West, B.,  
“Summary of High-Octane, Mid-Level Ethanol Blends Study,” ORNL/TM-2016/42, July 2016. 

http://articles.sae.org/14940/
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Laboratory, National Renewable Energy Laboratory, and Argonne National Laboratory with 

the objective of providing a quantitative picture of the barriers to adoption of HOF and the 

highly efficient vehicles it enables, and to quantify the potential environmental and economic 

benefits of the technology. Their findings are aligned with and reinforce the findings already 

noted by the industry and academic scholars above, specifically that the experimental and 

analytical results of this study considered together show that HOF mid-level ethanol blends 

could offer significant benefits for the United States. These benefits include a 5-10% 

efficiency increase in vehicles designed for increased ethanol content and a miles-per-gallon 

fuel economy parity with E10. 

Furthermore, dedicated HOF vehicles exhibit nearly 15% lower well-to-wheels GHG 

emissions resulting from increased vehicle efficiency and corn ethanol production and use; 

future corn stover use shows potential to increase the well-to-wheels (WtW) savings to 

around 30%, Figure 6.  By increasing the percentage of ethanol in the fuel supply, the amount 

of gasoline consumed decreases, thereby further reducing the nation’s dependency on crude 

oil imports and enhancing U.S. energy security. 

 

                                                        
Available at http://info.ornl.gov/sites/publications/Files/Pub61169.pdf  

http://info.ornl.gov/sites/publications/Files/Pub61169.pdf
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FIGURE 6 WTW GHG EMISSIONS REDUCTIONS IN VEHICLES FUELD BY HOFS WITH DIFFERENT ETHANOL BLENDING LEVELS 

RELATIVE TO REGULAR GASOLINE (E10) BASELINE VEHICLES.41  

5.6 Summary of High Octane Ethanol Fuel Benefits 

It is clear from the discussion above that increasing the compression ratio of new engine 

designs can be the primary means for taking full advantage of the ethanol’s beneficial 

properties for increasing efficiency; namely ethanol’s higher octane, higher sensitivity to 

autoignition kinetics, and higher heat of vaporization.  This applies to DI engines especially, 

both NA and turbocharged, which are expected to comprise the majority of future engines 

for both conventional and hybrid vehicles. Secondly, the studies above also demonstrate that 

the gains available from a high octane mid-level ethanol fuel standard are greater in real 

world driving than the legislated drive cycles. Since the costs to an OEM for increasing 

compression ratio are minimal for a new engine design, it is clear that implementing a high 

octane mid-level ethanol fuel standard would be the lowest cost technology and have even 

greater benefits in real world driving. 

6 OTHER ISSUES IMPACTING INCREASED ETHANOL USE 

The other key issue surrounding increased ethanol use in the U.S. is protecting equipment 

(both legacy fleet and new power or recreational equipment) that was not designed to 

operate on gasolines having more than a minimal level of ethanol. While the ORNL summary 

                                                        
41 Figure 8 of Theiss et. al. 
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report42 considers both the technical and commercial aspects of changing the nation’s fuel 

supply infrastructure as viewed by four key stakeholder groups, we will briefly mention here 

what seems to be a pragmatic approach to switching over to high octane mid-level ethanol 

blends. That is simply a 2-nozzle pump distribution system.  

In a 2-nozzle system the current standard gasoline fuel nozzle would be maintained and 

would protect legacy equipment and manufacturers that have not transitioned yet to the new 

mid-level ethanol fuel grade that new vehicles would have the option of benefiting from. To 

ensure that the new optimized vehicles will get only the higher octane mid-level ethanol 

blend a unique nozzle configuration can be employed such that old vehicles cannot get the 

new mid-level ethanol fuel and new vehicles cannot take the old E0 or E10 gasolines. 

The ORNL report has shown that all the underground fuel supply equipment is capable of 

handling higher ethanol blends so only the above ground fuel dispensing equipment would 

need to change. That level of change would come at a relatively modest cost, much less than 

the cost of all the on-vehicle technology that would be needed to overcome the continued 

reliance on lower octane E10 gasoline. 

 

                                                        
42 See Thiess et. al. 
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BACKGROUND 

Original equipment manufacturers (OEMs) of light-duty vehicles are pursuing a broad portfolio of 
technologies to reduce CO2 emissions and improve fuel economy. Central to this effort is higher 
efficiency spark ignition (SI) engines, including technologies reliant on higher compression ratios and 
fuels with improved anti-knock properties, such as gasoline with significantly increased octane numbers. 
Ethanol has an inherently high octane number and would be an ideal octane booster for lower-octane 
petroleum blendstocks. In fact, recently published data from Department of Energy (DOE) national 
laboratories (Splitter and Szybist, 2014a, 2014b; Szybist, 2010; Szybist and West, 2013) and OEMs 
(Anderson, 2013) and discussions with the U.S. Environmental Protection Agency (EPA) suggest the 
potential of a new high octane fuel (HOF) with 25–40 vol % of ethanol to assist in reaching Renewable 
Fuel Standard (RFS2) and greenhouse gas (GHG) emissions goals. This mid-level ethanol content fuel, 
with a research octane number (RON) of about 100, appears to enable efficiency improvements in a 
suitably calibrated and designed engine/vehicle system that are sufficient to offset its lower energy 
density (Jung, 2013; Thomas, et al, 2015). This efficiency improvement would offset the tank mileage 
(range) loss typically seen for ethanol blends in conventional gasoline and flexible-fuel vehicles (FFVs). 
The prospects for such a fuel are additionally attractive because it can be used legally in over 18 million 
FFVs currently on the road. Thus the legacy FFV fleet can serve as a bridge by providing a market for the 
new fuel immediately, so that future vehicles will have improved efficiency as the new fuel becomes 
widespread. In this way, HOF can simultaneously help improve fuel economy while expanding the 
ethanol market in the United States via a growing market for an ethanol blend higher than E10.  

The DOE Bioenergy Technologies Office initiated a collaborative research program between Oak Ridge 
National Laboratory (ORNL), the National Renewable Energy Laboratory (NREL), and Argonne 
National Laboratory (ANL) to investigate HOF in late 2013. The program objective was to provide a 
quantitative picture of the barriers to adoption of HOF and the highly efficient vehicles it enables, and to 
quantify the potential environmental and economic benefits of the technology. The project consisted of 
the following interconnected efforts. 

• Develop a preliminary description of the key knock resistance properties of HOF to obtain a full 
understanding of both regulatory and ASTM standard development issues with regard to defining and 
introducing this fuel. 

• Experimentally validate and measure the efficiency and performance benefits of HOF in a dedicated 
vehicle. This vehicle-level demonstration complements ongoing engine-based studies researching the 
benefits of increased fuel octane and engine compression ratio. 

• Experimentally validate and measure the performance benefits of HOF in current FFVs. 
Demonstrating a performance benefit in legacy FFVs could help in marketing ethanol blends for the 
legacy FFV fleet, which could bolster development of the infrastructure for fueling future vehicles 
specifically designed for this fuel. 

• Study the impacts on the petroleum refining sector and life-cycle GHG benefits across the US 
economy that would occur through broad adoption of HOF and the highly efficient vehicles it will 
enable. This effort is supported by analysis results under other subtasks: 

– Ascertain the shares of HOF and non-HOF demand of the light-duty vehicle fleet. These shares 
determine the refinery operations and the gasoline components in the refinery linear programming 
(LP) models. 
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– Define fuel property requirements for HOF. These constrain the properties of the hydrocarbon 
blendstock, which can have a large effect on life-cycle energy use and GHG emissions. 

• Gain a broad understanding of economic and regulatory barriers to adoption of HOF by four key 
stakeholder groups: fuel producers/distributors, fuel retailers, vehicle manufacturers, and consumers. 
Each group is subject to different federal and state regulatory requirements and has different 
economic constraints.  

• Determine the extent to which existing station and terminal infrastructure is compatible with HOF-
range (25 to 40%) ethanol blends, whether infrastructure components are compatible, and whether 
there is a blend-level breakpoint at which infrastructure compatibility is less of an obstacle. 

• Evaluate the cost reduction potential of HOF blendstocks including natural gasoline which has been 
suggested as a possible low-cost blendstock for HOF. 

 

ENGINES AND KNOCK 

A major efficiency-limiting combustion phenomenon in SI engines is referred to as knock or more 
specifically end-gas knock.  Desired cylinder combustion events are initiated at the proper time by the 
spark which ignites the surrounding air-fuel mixture.  A flame zone then expands, propagating through 
the combustion chamber, ideally consuming all the fuel, releasing heat and causing a pressure rise that 
imparts force on the moving piston.  Most of the force increase is applied to the piston during the 
expansion stroke such that the combustion process creates useful mechanical work.  As the spark-initiated 
flame zone expands, the unburned mixture beyond the flame zone is increasing in temperature and 
pressure due both to the expanding gas in the flame zone and the piston compressing the mixture further.  
Knock occurs when this unburned fuel-air mixture, known as the end-gas, detonates, or burns very rapidly 
essentially by compression ignition.  This undesirable event is also referred to as autoignition of the air-
fuel mixture.  A knock event applies sudden forceful pressure waves to the piston, piston rings and other 
components.  Knock must be limited due to the potential for significant engine damage.  There is 
typically an efficiency penalty for operating strategies that mitigate knock, including delayed spark timing 
and operating the engine fuel-rich.  

Manufacturers are building vehicles with smaller turbocharged engines (downsizing) and with powertrain 
controls aimed at lowering engine speed (downspeeding). Downspeeding and downsizing of SI engines 
can promote improved efficiency because these engines are typically more efficient at lower speeds and 
higher loads.  However, engines operating at these conditions are more prone to engine knock; mitigating 
knock through adjustment of spark timing and/or fuel enrichment is done at the expense of efficiency. 
When an engine at a given speed point is commanded to increase load such that knock will begin, the 
controller will “retard” the spark timing to later in the cycle than would otherwise be optimum for 
efficiency and power.  This spark timing change prevents end-gas knock and is known as knock limited 
spark advance (KLSA) and some efficiency is lost to avoid knock.  At higher loads, the use of further 
spark retarding can reach a limit (due to excessively high exhaust temperature, for example) and fuel 
enrichment is also used to meet the load while avoiding knock and engine damaging exhaust 
temperatures.  Enrichment further decreases efficiency and also increases emissions. 

The opportunity for further downsizing and downspeeding of engines to improve fuel economy is limited 
by the available octane rating of fuels. Note that higher octane fuels will allow higher efficiency designs 
of naturally aspirated and turbocharged engines dedicated to use the high octane fuel. 
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KNOCK RESISTANCE OF ETHANOL-GASOLINE BLENDS 

The tendency of an SI engine fuel to resist auto-ignition and engine knock is measured as the octane 
number, a critical performance parameter for SI engines. In the United States, the octane number at the 
retail pump is given as the anti-knock index (AKI), the average of the RON and the motor octane number 
(MON), AKI = ½(RON + MON). The differences between the RON and MON test methods are fuel-air 
charge temperature and engine speed; RON testing uses a comparatively low fuel-air charge temperature 
and slower engine speed, whereas the MON test is conducted at a significantly higher fuel-air charge 
temperature and faster engine speed. For modern light-duty SI engines, knock resistance is known to be 
well correlated with RON.  

Given the high RON of ethanol (109), it is commonly blended into a sub-octane blendstock for oxygenate 
blending (BOB) having a RON of approximately 84 to 88 to produce finished gasoline having adequate 
knock resistance (in terms of the anti-knock index). Ethanol has a nonlinear effect on the RON of the 
finished blend, with a diminishing effect as the ethanol content is increased. The increase in RON 
depends on the starting RON of the BOB, but it increases to around 100 to 105 at E50.  With addition of 
ethanol, the typical 87 AKI E10 can produce a 99-100 RON E25.  

Fuel knock resistance for direct injection engines is enhanced by the fact that the fuel-air charge is cooled 
in the cylinder as the fuel evaporates, reducing the end-gas temperature. This is a major advantage of 
direct injection over other SI engine fuel system types and is important regardless of the fuel type or the 
octane number. However, at 25°C, the heat of vaporization of gasoline boiling-range hydrocarbons is 350 
to 400 kJ/kg, while that of ethanol is 924 kJ/kg. The heat of vaporization difference is even greater when 
based on a mass stoichiometric mixture basis, in which the value for hydrocarbon is 22 kJ/kg while that 
for ethanol is 92 kJ/kg.  

An objective in the HOF project was to develop a clear understanding of how to measure heat of 
vaporization and how to quantify knock resistance for ethanol-gasoline blends. Blends of ethanol at 
nominal 10, 20, 25, 30, 40, and 50 vol % were prepared with three gasoline blendstocks and a natural 
gasoline. Natural gasoline, also known as natural gas condensate, is an inexpensive byproduct of natural 
gas production.  Consisting primarily of pentanes, it has low octane number, and is very volatile.  Because 
ethanol is such a potent octane booster, especially with lower octane blendstocks, natural gasoline blends 
were included in this study. 

Heat of vaporization was measured by two methods developed under the project: by differential scanning 
calorimetry/thermogravimetric analysis and as estimated from detailed hydrocarbon analysis. A striking 
feature of the results was the insensitivity of the heat of vaporization to hydrocarbon blendstock for 
temperatures up to 150°C: all four hydrocarbon blendstocks tested had essentially the same heat of 
vaporization in kJ/kg and the same response to blending with ethanol (Figure 1). These results have been 
published in a peer-reviewed journal (Chupka, 2015). 

The base gasoline and ethanol blends were evaluated in a single-cylinder engine developed from a 2009 
model year GM Ecotec 2.0 liter LNF-series engine with a wall-guided direct-injection combustion 
system. Knock-limited spark advance was measured in spark timing sweep experiments at a nominal load 
of 925 kPa net mean effective pressure, 1500 rpm, and an intake air temperature of 35°C (measured at the 
intake port). A relatively low engine speed was used because a longer combustion duration increases 
exposure of the unburned end-gas to heat and pressure, making the engine more sensitive to autoignition 
and knock. The load and intake air temperature were selected to ensure the engine could operate on the 88 
RON hydrocarbon base gasoline. A plot of KLSA versus RON is shown in Figure 2, which shows that for 
heats of vaporization ranging from 353 to 527 kJ/kg, RON is an excellent predictor of KLSA under these 
engine operating conditions. 
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Figure 1. Heat of vaporization as a function of ethanol content measured by differential scanning 

calorimetry/thermogravimetric analysis (California Reformulated Gasoline Blendstock for Oxygenate 
Blending blends) at 23°C and by detailed hydrocarbon analysis (all blends) at 25°C. 

 

 
Figure 2. KLSA versus RON. The E50 blend is not included because KLSA could not be reached at the test 

load. 

The results demonstrate that under relatively moderate load conditions in current-technology engines, 
heat of vaporization is not a factor in engine knock resistance. However, under more extreme conditions 
enabled by boosted engines using large amounts of spark timing retard to control knock, heat of 
vaporization may play a role. Additionally, it may be possible to calibrate future high-efficiency engines 
to take advantage of the heat of vaporization by, for example, injecting a fraction of the fuel after the 
intake valve closes. These results and associated discussion have been published (Sluder et al, 2016) and 
the possibilities are being examined under ongoing DOE-sponsored research. 
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EFFECTS OF HIGH OCTANE FUEL IN A DEDICATED VEHICLE  

It is essential to demonstrate the benefits a HOF paired with powertrains optimized for efficiency by 
taking full advantage of this fuel’s properties.  To demonstrate the potential efficiency and fuel economy 
benefits of high-octane mid-level ethanol blends in a dedicated vehicle, a Cadillac ATS equipped with a 
2.0 liter turbocharged, direct-injection engine and manual transmission was acquired.  A test plan was 
developed to explore HOF powertrain optimization using this vehicle as a platform; first with the vehicle 
in unaltered form and then with a series of physical modifications to the engine and vehicle combined 
with using chassis dynamometer settings to experimentally simulate alternative vehicle configurations. 

To downspeed the engine in the ATS vehicle, larger-diameter drive wheels were procured. In addition, 
with support from General Motors (GM), a custom 2.85:1 differential was acquired to replace the factory 
3.27:1 gear set to further downspeed the system. The combination of the larger drive wheels and 2.85 gear 
set lowered the engine speed by 20%. GM also provided an instrumented cylinder head to permit 
measurement of cylinder pressure and combustion phasing, and a nondisclosure agreement was executed 
to permit sharing of a proprietary engine calibration tool. 

In the first phase of the research, the factory compression ratio of 9.5:1 was used for baseline experiments 
with fuels ranging from 87.5 AKI (91 RON) to 101 RON and ethanol levels ranging from 0 to 30%. In 
the second phase of experiments, the factory compression ratio was retained while downspeeding was 
implemented with the aforementioned tires and differential. Additionally, downsizing was effectively 
achieved by evaluating the vehicle at an increased test weight and increased road load forces, simulating 
installation of the 2.0 liter engine in a mid-size 4,750 pound sport utility vehicle (SUV).  

Fuel economy improvements with HOF were demonstrated with the factory pistons along with 
downspeeding and downsizing, which forces the engine to operate at higher loads. The engine is more 
knock-prone under these conditions, and increasing the octane level through the addition of ethanol 
allows more efficient combustion phasing. Figure 3 shows the gasoline equivalent fuel economy for the 
Cadillac ATS on the high-load US06 cycle for both the stock setup and the downsped condition. The 
US06 test requires high engine loads and thus causes the engine controller to retard the ignition timing to 
suppress knock. Therefore, increasing the octane level allows for improved combustion phasing and 
improved fuel economy, even in the stock condition. Downspeeding the engine requires even higher 
loads, which would be expected to further exacerbate knock. As shown in Figure 3, the high octane E30 
yielded an efficiency improvement of more than 5% over the 88 AKI E10 in the stock setup. 
Downspeeding improved fuel economy with all fuels relative to the stock condition. Most notable is that a 
10% efficiency improvement was demonstrated on this cycle with high-octane E30 in the downsped 
condition compared with the stock condition with regular E10.  Note that in Figures 3, 4 and 5 the fuel 
economy (E0 MPGeq) represents miles per gallon normalized to the 97 RON E0 (93 AKI) fuel based on 
lower (volumetric) heating value. 

Similar results for the Highway Fuel Economy Test (HFET) are shown in Figure 4. The HFET is a fairly 
light load test with mild accelerations, an average speed of 48 mph, and a top speed of only 60 mph. For 
most vehicles, the HFET is not a knock-limited cycle; however, with extreme downspeeding, the ATS is 
apparently knock-limited with the 88 AKI E10 so that the HOF allows for improved efficiency. 
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Figure 3. Gasoline equivalent fuel economy for a Cadillac ATS on high-load US06 cycle for stock and 

downsped conditions with three fuels. Range bars indicate maximum and minimum results for multiple tests. 

 
Figure 4. Gasoline equivalent fuel economy for a Cadillac ATS on the Highway Fuel Economy test for stock 

and downsped conditions with three fuels. Range bars indicate maximum and minimum results for multiple tests. 

The Cadillac ATS equivalent test weight (ETW) is 3,750 pounds. Setting the vehicle dynamometer to 
simulate a Cadillac SRX SUV with a 4,750 ETW and higher road load further loaded the engine, 
essentially simulating installing the 2.0 liter ATS powertrain in a larger SUV. In these 
downsped/downsized experiments, the high-octane E30 yielded a 4% efficiency improvement over the 
regular E10 on the HFET and more than a 10% improvement over the certification database fuel economy 
for the same vehicle equipped with a naturally-aspirated V6 (Figure 5). 
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Figure 5. Highway fuel economy test results for downsped/downsized case. EPA certification data for a Cadillac 

SRX V6 are shown for comparison. Range bars indicate maximum and minimum results for multiple tests. 

In phase 3 of the effort, the 10.5:1 compression ratio pistons were installed in the engine. These custom 
pistons were iteratively designed by KS Kolbenschmidt GMBH, and static and dynamic engine models 
were exercised by GM to ensure there would be no mechanical interference between the custom pistons 
and the cylinder head or valves. Following design approval by GM, custom 10.5:1 and 11:1 pistons were 
fabricated. Upon installation of the 10.5:1 pistons, the engine ran normally for a short time; but engine 
problems (unrelated to the pistons) precluded completion of the high-compression experiments before 
publication of this summary report.  

 

EFFECTS OF HIGH OCTANE FUEL ON LEGACY VEHICLES 

A small pilot study was conducted to explore the potential performance benefits of high octane ethanol 
blends in the legacy fleet (Thomas, et al., 2015). There are more than 18 million FFVs currently on the 
road in the United States, vehicles capable of using any gasoline/ethanol blend from E0 to E85. If 
currently available FFVs can realize a performance advantage with a high octane ethanol blend such as 
E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated 
vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 AKI, and a 
market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 AKI. The 
RONs were 92.4 for the E10 fuel and 100.7 for the E30. General Motors (GM), Ford and Chrysler have 
produced the vast majority of FFVs on the road; GM has produced over half of these.  Thus two GM 
vehicles and one each from Ford and Chrysler were recruited for the study, including 

• 2014 GMC Sierra pickup truck, 4.3 liter V6 direct-injection engine 
• 2014 Chevrolet Impala, 3.6 liter V6 direct-injection engine 
• 2013 Ford F150 pickup truck, 5.0 liter V8 port-fuel injected (PFI) engine 
• 2013 Dodge minivan, 3.6 liter V6 PFI engine 
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All four vehicles were naturally-aspirated; the two GM vehicles had gasoline direct-injection engines and 
the Ford and Dodge vehicles featured port fuel injection. Significant wide-open-throttle performance 
improvements were measured for three of the four FFVs running the high-octane E30 blend, with one 
vehicle showing no change. The most significant performance benefit was noted on the GMC Sierra FFV, 
as shown in Figure 6. This performance gain was noted to be comparable to that for a similar Chevrolet 
Silverado tested with E85 (Car and Driver, 2014). Consistent with expectations, fuel economy 
measurements over the standard city and highway certification cycles tracked the energy density of the 
test fuels, indicating insignificant knock-limited operation with the E10 base fuel on these light load 
cycles.  

 
Figure 6. Acceleration time for GMC Sierra FFV using regular E10 and high octane E30 fuel. Range bars 

show maximum and minimum for 12 tests. 

Experiments with a 2014 Ford Fiesta (non-FFV) vehicle with a small turbocharged direct-injection engine 
were conducted with a regular grade of gasoline without ethanol (E0) and a splash blend of this same fuel 
with 15% ethanol by volume (E15). The addition of 15% ethanol increased the RON from 90.7 for the E0 
to 97.8 for E15. Significant improvements in wide-open-throttle and thermal efficiency performance were 
measured for this vehicle when fueled with the high-octane E15. It achieved near volumetric fuel 
economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel 
economy in forthcoming downsized, downsped engines with HOF. 

Figure 7 compares E15 fuel economy on a relative basis with E0 performance in the Ford Fiesta to 
highlight the improved efficiency for high-octane E15 despite the lower heating value. The expected drop 
in miles per gallon is 5.6% for E15 versus E0 (based on volumetric energy density ratio), and is denoted 
by the horizontal red line in the figure.  Note that the E15 fuel economy was considerably higher for all 
tests. For the US06 cycle, volumetric fuel economy parity was almost realized with E15, indicating a 
4.6% improvement in thermal efficiency. These results were due to the apparent knock-limited operation 
on the high-load US06 cycle for this small, turbocharged engine. HOF enables less spark retard and 
significantly improved efficiency. These results are consistent with those reported by others with 
turbocharged, direct-injection engines (Jung, 2013; Leone, 2014). Note that the energy density difference 
between E0 and E15 is very similar to that expected between E10 and E25. Note also that no changes 
were made to the Fiesta’s shift schedule. Hardware and software changes to future vehicles using high-
octane mid-level blends would be expected to enable greater efficiency gains from downspeeding. It is 
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important to note that the results for this EcoBoost Fiesta are not representative of what might be 
expected from the majority of legacy or current production vehicles. 

 

 
Figure 7. Relative fuel economy for regular E0 and high-octane E15 fuel in a Ford Fiesta. The red line 

indicates the expected fuel economy with E15 based on the volumetric heating value ratio of the fuel. 

Results of vehicle experiments in this program indicate the following: 

• High-octane mid-level ethanol blends improved the acceleration performance of legacy FFVs. 

• HOF can improve the efficiency of vehicles equipped with turbocharged, direct-injection engines by 
more than 5%. 

– Efficiency improvements of 5% allow for “volumetric fuel economy parity”; that is, the efficiency 
gain in future HOF vehicles fueled with E25 would essentially return the same fuel economy as in 
comparable present-day vehicles fueled with regular E10, despite the lower energy density 
associated with higher ethanol blending. 

 

WELL-TO-WHEELS GREENHOUSE GAS EMISSIONS ANALYSIS OF HOF 

The objective of the well-to-wheels (WTW) analysis is to model petroleum refining to produce RON 100 
final gasoline products with a range of ethanol blending levels and gasoline blendstocks . Such 
blendstocks matched to these different levels of ethanol require different petroleum refining operations 
during production (Hirshfeld, 2014). Addressing these various blending options is especially important 
given that US refineries may face the increased use of both heavy crudes, such as oil from the Canadian 
oil sands, and very light crude shale oil from shale formations such as Bakken and Eagle Ford, and the 
predicted changeover in product slates such as reduced gasoline production and increased diesel 
production. The energy and GHG emission intensity differences among these HOF options from 
petroleum refinery LP modeling, together with upstream production of different crude types and ethanol, 
are incorporated into the GREET model for WTW simulations of energy and GHG effects. 
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The WTW GHG emissions impacts of HOF relative to current gasoline requires accounting for vehicle 
efficiency gains with HOF, refinery operation changes to produce HOF, and the GHG emissions changes 
from blending corn and cellulosic ethanol into HOF. Detailed refinery LP simulations supplied the WTW 
analysis with changes in energy intensities and GHG emissions of various gasoline streams for a range of 
HOF market shares (3 to 71% of the total gasoline market in 2020–2030) and ethanol blending levels 
(E10, E25, and E40). The WTW analysis was conducted in two phases where two different types of 
refinery models were used. In the phase 1 analysis, ANL investigated three major refinery configurations 
(cracking, light coking, and heavy coking) in Petroleum Administration for Defense Districts (PADDs) 2 
and 3. In the phase II analysis, ANL employed regionally aggregated refinery models for 6 different 
regions: PADDs 1, 2, 3 and 4, PADD 5 without California (CA), and CA individually (due to significant 
differences in CA refineries and regulations compared to others in PADD 5).  Moreover, ANL examined 
several refinery capital expansion options for E10 HOF production cases. 

Figure 8 summarizes the GHG reductions of HOF vehicles from miles per gallon of gasoline-equivalent 
(MPGGE) gains of 5 and 10%, ethanol blending, and changes in refinery operation with HOF production 
estimated in the phase II analysis. The results show that the impacts of HOF introduction on WTW GHG 
emissions were dominated by vehicle efficiency gains resulting from the use of HOF and the specific 
ethanol blending levels.  The production efficiencies of gasoline blendstocks for oxygenate blending for 
various HOF blend levels (E10, E25, and E40) had only a small impact on WTW GHG emissions.  

 

 
Figure 8. WTW GHG emissions reductions in vehicles fueled by HOFs with different ethanol blending levels 

relative to regular gasoline (E10) baseline vehicles. 

These results from aggregated refinery LP models were generally consistent with those from 
configuration refinery LP models in the phase I study. The 5 and 10% MPGGE gains by HOF vehicles 
reduced the WTW GHG emissions by 4 and 8%, respectively, relative to baseline E10 gasoline vehicles. 
Additional 4 and 9% reductions in WTW GHG emissions can be realized with E25 and E40 blending of 
corn ethanol, respectively (corn ethanol GHG reductions were simulated with GREET). With corn stover 
ethanol blending, the additional WTW GHG reductions were 2, 12, and 23% for E10, E25 and E40, 
respectively. On the other hand, the changes in refinery operations needed to produce HOFs with various 
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HOF market shares and ethanol blending levels had a much smaller impact on changes in WTW GHG 
emissions (~1%). The WTW analysis shows that ethanol can be a major enabler in producing HOF and 
can result in additional reductions in WTW GHG emissions compared with regular E10 gasoline. 

Additionally, our regional WTW analysis in Figure 9 showed that the WTW GHG emission reductions by 
HOF vehicles fueled by E25 HOF relative to E10 baseline vehicles are fairly consistent at 8–9% (or 36–
40 g CO2e/mile driven) throughout all regions when corn ethanol is used for ethanol blendstock. The 
reduction in the WTW GHG emissions is driven largely by the low GHG emissions associated with 
ethanol blendstock and the (assumed) 5% vehicle efficiency gain. The key driver for the regional 
differences in the WTW GHG emissions is the crude quality, in addition to refinery operation. For 
example, the WTW GHG emissions of PADDs 2 and 4, in which a large amount of Canadian oil sands 
are consumed, were much greater compared to other regions.  

 
Figure 9. WTW GHG emissions (g CO2e/mile driven) by HOF vehicles fueled with E25 HOF as compared 

with regular gasoline vehicles in the non-HOF baseline scenario by region. 

As the ethanol blending levels are assumed to increase beyond 25%, more gasoline blendstocks shift from 
high octane, mid-level ethanol gasoline to gasoline available for export. It is interesting that the efficiency 
of refining the total gasoline blendstocks (domestic regular and HOF gasoline plus export gasoline) was 
also unchanged with different ethanol blending levels and market shares. However, many changes in 
gasoline components (e.g., reformate, alkylate, naphtha) were observed in the domestic gasoline 
blendstock and export gasoline pools. This is likely a result of simply moving HOF gasoline components 
displaced by ethanol into the export pool. 

 

MARKET ANALYSIS 

Analysis was performed assessing the economic and regulatory barriers to the introduction of a 25% and a 
40% ethanol HOF into the market, including options for overcoming these barriers. This included 
investigation of attractions and deterrents for HOF introduction for key stakeholder (market) groups and 
assessment of market potential. The four stakeholder groups included fuel producers/ distributors, fuel 
retailers, vehicle manufacturers, and consumers. Assessments included the market effects and benefits of 
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HOF with regard to increasing ethanol use; achieving the RFS2 (or variant) in a timely, cost-effective 
way; reducing fuel costs, and providing consumer and economy-wide benefits. Results included ways of 
enhancing the HOF business case that circumvent difficulties faced by E85 and E15 (Johnson et al., 
2015).  

The participation of four main stakeholder groups was predicated upon the benefits of HOF outweighing 
the costs. Drivers using HOF have the potential to benefit from projected fuel cost savings, reduced price 
volatility, increased torque in performance applications, and the energy security and environmental 
attributes. Vehicle manufacturers could benefit from HOF as a means to meet future fuel economy and 
GHG requirements and as a way to increase torque in performance applications. Fuel retailers could 
obtain higher per-gallon profit margins from HOF than from gasoline, could see increased visits to their 
stores as a result of the potentially lower price of HOF versus gasoline, and could use HOF as a means to 
differentiate their stations from the competition. Fuel producers have the potential to benefit from HOF as 
a way to comply with RFS2, because the boost in ethanol demand could come at a strategic time for the 
transition to cellulosic ethanol, and because it could enable the use of less expensive fuel blendstocks. 

Despite the potential benefits of HOF, there are also barriers and associated costs that must be resolved 
before it is adopted at large scale. Thirty of these barriers were identified through interviews with 16 
companies and industry associations representing fleet managers, individual drivers, vehicle 
manufacturers, vehicle dealers, retail fuel stations, ethanol producers (corn and cellulosic), large oil 
companies, and midstream fuel distributors. This barrier identification was supplemented by information 
from literature reviews and HOF-related workshops. Ninety-four potential strategies to curtail these 
barriers were also identified and explored. Complementary subsets of these strategies were grouped into 
eight deployment scenarios. 

The eight deployment scenarios were modeled by the Automotive Deployment Options Projection Tool 
(ADOPT) to estimate the adoption rate of HOF vehicles. All scenarios showed the potential for HOF 
vehicles to comprise a substantial percentage (43−79%) of the light-duty vehicle stock by 2035. In 
general, more HOF vehicles were adopted if HOF was E40, because they offer greater fuel cost savings 
and offer vehicle manufacturers a greater GHG emissions benefit than if the HOF were E25. The 
estimated HOF vehicle penetration from ADOPT was then used as an input to analyze potential impacts 
of HOF on the fuel supply chain. The Biomass Scenario Model (BSM) and the BioTrans model were used 
for this scenario analysis. The two models are complementary because they focus on different ways that 
HOF-related investments could be made along the fuel supply chain.  

The modeling analyses concur that feedstock availability and cost are not expected to be obstacles to the 
substantial development of a HOF market, across all of the scenarios considered. In numerous scenarios, 
HOF costs were sufficiently competitive that a substantial market share was attained—up to 75 billion 
gallons of E40 or 30 billion gallons of fuel ethanol by 2035. This would meet over 60% of light-duty 
vehicle fuel demand in that year, according to projections from the ADOPT model. However, all 
scenarios fell short of 100% of the fuel demand of light-duty vehicles and were therefore limited. The 
limiting factors affected the eight scenarios in the following pattern: 

1. Recognizing that regulations not taking HOF into account would be a limiting factor, most scenarios 
included the following assumptions: 

a. HOF is registered as a fuel and listed as a certification fuel.  

b. RFS2 is set to increase predictably, so that renewable identification number prices remain within 
historic levels. 
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c. Future fuel economy and GHG regulations are set so their accounting systems adequately reward 
the production of HOF vehicles. 

2. Fuel retailers’ investment in HOF-compatible equipment was a limiting factor in many scenarios. At 
varying degrees of market penetration, the economics were marginal for certain retailers to invest. 
Retailer decisions to invest in HOF equipment were no longer the limiting factor if the following 
elements were in place:  

a. The retailer is incentivized to invest through a grant, rebate, or tax credit. Scenarios in which 
incentives covered 40% of investment had greater market penetration, which increased even more 
when 80% of costs were covered.  

b. Retail equipment cost is reduced by incentivizing equipment manufacturers, by assisting in 
development of equipment, by subsidizing the equipment, or through economies of scale. These 
strategies assume a competitive market in which savings to equipment manufacturers result in 
lower equipment price.  

c. Only HOF-compatible equipment is sold in advance of HOF introduction, which would 
effectively reduce the up-front cost for retailers that had retired and replaced their equipment after 
normal useful life. 

3. The number of new biorefineries that can be constructed in a year was the limiting factor in scenarios 
that were not limited by the retail investment barrier, especially in the early years of rapid-growth 
scenarios. This constraint resulted in a higher ethanol price, which could subsequently deter the use of 
HOF. This barrier was adequately curtailed in scenarios where: 

a. Enough time passed to allow biorefinery construction to catch up with ethanol demand. This 
happens around 2025 in applicable cases. 

b. Biorefinery construction was performed at an annual rate greater than previously seen in the 
United States. 

4. HOF vehicle adoption was the limiting factor for the two scenarios in which adequate retailer 
investment had been made and biorefinery construction had caught up with demand. The specific 
level of HOF vehicle adoption depended on a number of factors: 

a. More HOF vehicles are adopted if HOF is E40 because it offers greater fuel cost savings to 
drivers and greater fuel economy/GHG emissions benefits to vehicle manufacturers under future 
regulations that sufficiently reward the fuel economy benefits associated with HOF. 

b. Proactive vehicle conversion schedules, in which entire model lines are converted to HOF 
vehicles, result in greater estimated HOF vehicle adoption than conversion schedules that follow 
market demand.  

c. ADOPT estimated that a $2,500 incentive to the driver would significantly increase HOF vehicle 
adoption.  

The need for feedback loops between the vehicle model and the fuel models was identified during this 
analysis. Such feedback loops were established between the ADOPT and BSM models, a baseline 
scenario was run, and sensitivity analyses were performed on variables deemed influential. These runs 
provided new insight into the interrelationships between the vehicle and fuel supply industries under 



 

  14 
 

various deployment, incentive, and external conditions. These insights were reported in Newes et al. 
2015. The combined vehicle and fuel supply model is also available to use in future market analyses. 

HIGH OCTANE FUEL INFRASTRUCTURE 

RETAIL STATIONS 

A major objective was to identify the issues associated with storing and dispensing a new fuel in the 
existing infrastructure, considering both the aboveground and the underground equipment. A service 
station consists of many interconnected pieces of refueling equipment necessary to deliver fuel to 
vehicles. There are approximately 60 pieces of equipment at a station designed to handle fuel and vapor 
and regulations require nearly all of this equipment to be compatible with the fuel stored. Two questions  
considered in introducing a new fuel to existing infrastructure are:  

• Is the infrastructure compatible?  
• Is the equipment listed by a third party or approved by the manufacturer for use with a specific fuel?  

A significant amount of research and regulatory action has addressed these concerns with positive 
progress toward enabling the use of ethanol blends higher than E10 in existing and upgraded equipment. 
The issues for deploying equipment handling higher ethanol blends center on cost considerations and 
station knowledge of fueling equipment - rather than technical issues. A potential barrier is that stations 
are not required to keep records of equipment if they are selling E10 or lower ethanol gasoline. This 
makes it difficult to determine if existing equipment is compatible with various ethanol blends. For 
aboveground equipment, UL-listed E25 and E85 equipment (which satisfies federal and local regulations) 
is available. The price premium for E25 equipment is minimal compared to conventional E10 equipment, 
whereas the price premium is significant for E85 due to the use of specialized metals (Johnson et al., 
2015; Moriarty, Kass and Theiss, 2014). Interested parties have suggested testing E25 equipment to see if 
it can be recertified by UL for E30 or E40. Credit card companies are switching to chip and pin cards, 
which will result in many dispensers being upgraded or replaced to accommodate the new cards by 
October 2017. This is a large, near-term opportunity to upgrade dispensers to accommodate higher-level 
ethanol blends.  

EPA's Office of Underground Storage Tanks regulates underground storage tanks (USTs) per Code of 
Federal Regulation (CFR) Title 40 Subtitle 1 Subchapter 1 Parts 280-282. The federal UST regulation 
was updated in October 2015 with section CFR 280.32 in the 2015 UST regulation providing clarity to 
the 1988 compatibility requirement by specifying additional compatibility requirements for owners and 
operators wishing to store certain regulated substances, including fuels containing more than 20 percent 
biodiesel (and 10 percent ethanol).  All portions of an UST system must be compatible with the fuel 
stored.  Demonstrations of compatibility must be provided for the: tank, piping, containment sumps, 
pumping equipment, release detection equipment, spill equipment, and overfill equipment. The 
requirements are: 
 

1. Owners of USTs switching to store blends containing greater than 20% biodiesel or 10% ethanol 
must notify their implementing agency (usually a state office) 30 days prior to switching fuels to 
store an E10+ (or B20+) blend. 

 
2. Owners of USTs storing greater than E10 must demonstrate compatibility through either: 

 
a. Certification/listing of equipment for use with the fuel stored by a nationally recognized, 

independent testing laboratory or 
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b. Equipment or component manufacturer approval for use with the fuel stored. This written 
statement must  affirm compatibility and list the specific ranges of biofuel blend the 
equipment or component is compatible with or     

c. Use of another option determined by the implementing agency to be no less protective of 
human health and the environment. 

 
3. Owners of USTs storing fuels containing greater than 10% ethanol must maintain records 

demonstrating compatibility as long as the fuel is stored. 
 

TERMINALS 

Terminals are an important part of the transportation fuel supply chain moving products to end-user 
markets. Their primary function is to store and distribute fuels. The Oil Price Information Service reports 
that there are 1,296 terminals storing transportation fuel nationwide, and nearly all either store ethanol or 
are capable of storing it (OPIS, 2015). Terminals store all fuel components separately (i.e., gasoline 
blendstock, ethanol, additives), and they are blended in-line as they are delivered to transport trucks. 
Many companies with terminals are also obligated parties under RFS2, and they may see a benefit in 
deploying more ethanol capacity to meet their volume requirements and see it as a potential revenue 
stream through renewable identification number markets.  

While there are no technical barriers to storing more ethanol, there are several non-technical factors that 
could limit increased deployment of ethanol at terminals, including: terminal companies report that nearly 
all tanks are in-use, and there is a lengthy permit process to build a new tank if needed; land to add new 
tanks and off-loading facilities may not be available; increased truck traffic to deliver ethanol could be 
problematic for some terminals; pipeline companies own many terminals and lease tanks to customers 
under long-term contracts for storage of specific fuels, thus there would have to be a strong business case 
to motivate terminals to add off-loading, and loading bay equipment and additional tanks if no existing 
ones are available. Many terminals receive ethanol from rail trans-modal facilities and further study is 
required to determine the ability of trans-modal facilities to handle more ethanol. 

LOW-COST POTENTIAL HOF BLENDSTOCKS  

The important objective of quantifying the potential of low cost HOF formulated with natural gasoline 
was addressed by the following activities: 

• Examine the ranges of composition and properties for natural gasoline sold in the US market. 

• Determine the properties of blends of various natural gasolines and ethanol at different blend levels. 

• Develop a model to predict natural gasoline–ethanol blend vapor pressure for Flex Fuel (ASTM 
D5798 compliant fuel). 

Samples of natural gasoline were obtained from eight sources covering the range available in the market. 
These were assessed for chemical composition using detailed hydrocarbon analysis (ASTM D6730: high-
resolution gas chromatography to identify individual components of gasoline) and by benzene analysis 
(ASTM D3606). Sulfur, Reid vapor pressure (RVP), and RON were determined by appropriate ASTM 
methods.  

A subset of samples meeting the current benzene limit and the proposed Tier 3 sulfur limit, and covering 
the range of composition and properties, were blended to produce E30 (HOF) and Flex Fuel (E51, E70, 
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and E83). The vapor pressure, RON, and MON were measured. For the E30 blends, NREL also measured 
the distillation curve (ASTM D86) and vapor lock protection class (Alleman, 2015).  

NREL has used a modeling approach based on the Wilson equation and on considering the gasoline as a 
pseudo-component to successfully predict the vapor pressure of gasoline–alcohol blends to within 0.7 kPa 
(Christensen, 2011), which is more precise than the repeatability of the vapor pressure measurement 
method (2 kPa for ASTM D5191). This modified Wilson method was applied to the blends to determine 
its suitability for predicting RVP to eliminate the need for RVP testing of the final blend, thus eliminating 
the need for additional testing at the terminal. The modeling approach showed that the RVP for the 
finished fuel could successfully be estimated from the RVP of the blend components for this work.  These 
results have been published in a peer-reviewed journal (Alleman, 2015). 

Key outcomes from this research (Alleman, 2015) include: 

• Natural gasoline samples in this project consisted of 80–95% paraffinics, 5–15% naphthenics, 3% or 
less aromatics, and the balance olefins. Paraffins were typically n-pentane and iso-pentanes.  

• Benzene content ranged from approximately 0.1 to 1.2 wt %, so blends of E30 and E40 would meet 
EPA limits for benzene content in gasoline.  

• Sulfur content ranged between 4 and 145 ppm. Assuming an ethanol content of 51 vol % (Flex Fuel 
minimum ethanol content), a natural gasoline blendstock would be required to have 20 ppm sulfur or 
less for the finished fuel to meet the EPA Tier 3 gasoline sulfur limit.  

• Vapor pressure (ASTM D5191-13) ranged from 12.9 to 14.6 psi. Because of the high vapor pressure, 
over 70 vol % ethanol could be blended into Flex Fuel while still meeting the class 4 (wintertime) 
minimum vapor pressure requirement of 9.5 psi. For blending of class 1 (summertime) Flex Fuel, a 
minimum of 74 vol % ethanol was required to stay below the 9 psi upper limit on vapor pressure.  

• Modeling of vapor pressure using universal quasichemical functional-group activity coefficients 
(UNIFAC) and Wilson equation-based approaches provided good agreement with experimental data 
for most samples.  

• The RON for the natural gasoline ranged from 67 to 72. When it is blended with ethanol, the 91 RON 
level typical of finished regular gasoline would be met with approximately 30 vol % ethanol.  Natural 
gasoline is a volatile, low-cost blendstock for Flex Fuel.  For a high-octane mid-level blend, natural 
gasoline could only be used as a blending component. 

 

CONCLUSIONS 

The experimental and analytical results of this study considered together show that HOF, specifically 
mid-level ethanol blends (E25-E40), could offer significant benefits for the United States. These benefits 
include an improvement in vehicle fuel efficiency in vehicles designed and dedicated to use the increased 
octane. The improved efficiency of 5-10% could offset the lower energy density of the increased ethanol 
content, resulting in volumetric fuel economy parity of E25-E40 blends with E10.  Most of the flex-fuel 
vehicles on the road today would be expected to have faster acceleration using HOF, which offers a 
marketing opportunity in the near term.  Furthermore, dedicated HOF vehicles would provide lower well-
to-wheel GHG emissions from a combination of improved vehicle efficiency and increased use of 
ethanol.   If ethanol were produced using cellulosic sources, GHG emissions would be expected to be up 
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to 30% lower than those from E10 using conventional ethanol and gasoline. Refinery modeling suggests 
that refiners could use higher levels of ethanol to meet potentially high market shares of HOF.   

Analysis of the HOF market and the primary stakeholders reveals that the automotive OEMs, consumers, 
fuel retailers, and ethanol producers all stand to benefit to varying degrees as HOF increases its market 
share. The results depend on the underlying assumptions; but HOF offers an opportunity for improved 
fuel economy, and these dedicated vehicles are likely to be appealing to consumers. The possible limiting 
constraints to significant HOF market penetration were identified. Regulatory uncertainty and insufficient 
retailing investment were considered the most likely constraints to limit the introduction of HOF. HOF 
could be limited by the rate of construction of additional integrated biorefinery capacity, and poor 
dedicated HOF vehicle penetration would also limit the overall HOF market. Feedstock availability was 
not found to limit the growth of HOF. 

It would be a significant benefit if a new fuel utilized the existing infrastructure. Our findings were that 
neither technical nor materials obstacles are likely to prohibit HOF, but new aboveground equipment 
compatible with HOF will need to be installed. Sufficient capacity was found to allow the introduction of 
HOF at the nation’s terminals.  

Overall blendstock costs are not a significant barrier to HOF introduction and the low cost of natural 
gasoline makes it attractive to consider for a blending component. The properties of HOF, when using 
natural gasoline as the sole blendstock, can be predicted with sufficient accuracy using industry-accepted 
models for RVP. The use of these models to predict final RVP of the finished blend eliminates the need 
for additional test capability at terminals and reduces a barrier to introduction of this type of HOF blend.  
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1.0 Introduction 
 
In August of 2012, EPA released a final rule setting greenhouse gas (GHG) standards for 
cars, light trucks, and SUVs for model years 2017-2025. 2 The final standards for model 
year 2025 were projected to result in a fleetwide CO2 tailpipe emissions of 163 g/mi, if 
achieved exclusively through fuel economy improvements. The final standards were 
based on vehicle footprints, so that all vehicles would achieve GHG emission reductions, 
regardless of size.  EPA expected that improvements would come from advances in 
engines and transmissions, weight reduction, improved aerodynamics, advances in 
internal combustion engines, along with increases in hybrid electric vehicles (HEVs) and 
battery electric vehicles (BEVs). New 2025 model year vehicles (cars and trucks 
combined) were estimated to cost $1,800 more than 2016 model year vehicles.  
 
Since the standards were finalized with a long lead-time before they took effect, EPA 
committed to releasing a Technical Assessment Report (TAR), in 2016 to reassess the 
feasibility of the 2022-2025 model year standards. This report was released in July of 
2016. The report generally reaffirmed the feasibility of the original GHG standards.  
 
One key, inexpensive technology that could improve vehicle fuel economy, which was 
not evaluated by the either the Final Rule or TAR, is an increase in engine compression 
ratio (CR) that is enabled by a high-octane fuel. Current production engine compression 
ratios are limited by the octane of gasoline in the U.S. If octane is increased, engine 
compression ratios can increase, increasing engine efficiency and reducing GHG 
emissions. So called premium fuel with higher octane content does enable higher 
compression ratios, but the price difference between premium and regular fuel, along 
with the concern that vehicles designed for premium would most often be operated on 
regular because of the price difference in the fuels, effectively limits the amount that 
automakers can increase compression ratios in the U.S.  A high-octane mid-level ethanol 
blend, however, is likely to be very price-competitive with current regular fuel. If such a 
fuel were widely available at a competitive cost to regular, auto manufacturers would be 
likely to employ increased compression ratios to reduce GHG emissions. There is much 
research going on in this area related to how much engine compression ratios could be 
increased with mid-level ethanol blends, such as E25 or E30. EPA has also indicated that 
high-octane fuels could be examined to improve GHG emissions post-2025.3  
																																																								
1	This study was made possible through a research grant from the Minnesota Corn Research and Promotion 
Council.		
2	EPA and NHTSA Set Standards to Reduce Greenhouse Gases and Improve Fuel Economy for Model 
Years 2017-2025 Cars and Light Trucks, Regulatory Announcement, USEPA, OTAQ, EPA-420-F-12-051, 
August 2012.  
3 Technical Assessment Report, pg. 5-42, “this program [Co-Optima] has the potential to provide 
meaningful data and ideas for GHG and fuel consumption reductions in the light-duty vehicle fleet for 2026 
and beyond”. 
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The attractiveness of a high-octane mid-level ethanol blend goes beyond just meeting the 
GHG standards. The Renewable Fuel Standard (RFS) reduces up-stream GHG emissions 
reductions from future fuels by requiring increasing amounts of low-GHG fuels. The 
increase in these required low GHG fuels, however, has declined from the levels 
originally intended because development of cellulosic biofuel is taking somewhat longer 
than originally anticipated, and because gasoline marketers have not developed refueling 
infrastructure for E85 due to slow sales of E85. The slow sales of E85, however, are a 
function of how E85 has been priced relative to its energy content. The availability of a 
high octane mid level blend for vehicles purposely designed for this fuel, would spur 
additional advances in cellulosic biofuel, thereby increasing the benefits of the RFS.  
 
To attempt to fill the gap in the Final Rule and TAR analysis on high-octane fuels, this 
study evaluates the possible implementation of higher compression ratio (HCR) engines 
using high-octane low carbon (HOLCF) fuel in the 2022-2025 model years, and the 
impacts on the costs of EPA’s GHG standards. In this study, we assume the same tailpipe 
GHG standards as EPA’s final rule, so the environmental benefits of this HCR/HOLCF 
strategy exceed the benefits of the current TAR, because under HCR/HOLCF, the tailpipe 
benefits are the same as the TAR, while the upstream benefits of the RFS are greater than 
currently estimated by EPA.  
 
In this study, we evaluate the impacts of the widespread availability of a 98-RON E25 
fuel.4  We mainly focus on the impacts on the TAR-estimated costs, and for simplicity 
ignore the potential increases in RFS benefits, which are significant. There are three 
general parts to the analysis. In the first part, we estimate how much of an increase in CR 
is possible with 98-RON E25 based on existing research, and the effects on tailpipe GHG 
emissions. In the second part, we estimate the costs of compression ratio increases, and 
also 98-RON E25 fuel costs, relative to regular E10. In the third part, we implement high 
compression ratio engines and the total engine plus fuel costs into EPA’s modeling 
system, and compare program costs and technology penetrations before and after this 
implementation.   
 
We do not evaluate the impacts of a premium fuel on compression ratios and overall 
program costs. The main reason for this is cost – the current price differential of premium 
over regular in the US is about $0.26/gallon. Using EPA’s mileage accumulation rates for 
passenger cars, an assumed fuel economy of 45 mpg, and a 7% discount rate, the net 
present value of the fuel costs is $860, close to the average new vehicle cost in the TAR. 
While the use of premium fuel to improve compression ratio would reduce technology 
costs to meet the GHG standards, with the historical and expected price differential 
between regular and premium, it is unlikely that premium would be used extensively by 
vehicle owners, unless regular fuel were eliminated at service stations.  
 
The study is organized into the following sections: 
 
																																																								
4	The selection of this level of ethanol is for the purposes of this study. If automakers chose to certify on a 
different level of ethanol, the benefits of E25 in this study could be scaled.		
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Section 2 – Effect of Increased Compression Ratio on GHG Emissions 
Section 3 – Compression Ratio Costs and Fuel Costs  
Section 4 - Incorporating HCR/HOLCF into the EPA OMEGA Model 
Section 5 - Discussion 
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2.0 Effect of Increased Compression Ratio on GHG Emissions  
 
There have been a number of studies over the past several years examining the effect of 
ethanol on increasing octane, and the effect of octane on increasing compression ratios 
and engine efficiency. This section reviews several recent studies, and develops an 
estimate of the reduction in tailpipe GHG emissions that are possible with a high-octane 
ethanol fuel like 98-RON E25.   
 
2.1 SAE 2013-01-1321 
 
In a 2013 study by Ford Motor Company, a 2013 production 3.5L direct injection 
turbocharged V6 engine was engine dynamometer tested comparing the standard 10.0:1 
compression ratio with 87 AKI E10 commercial fuel with 11.9:1 compression ratio with 
96 RON E20 and 101 RON E30.5 The E20 and E30 fuels were prepared by splash 
blending denatured ethanol into the E10 base fuel (fuel properties are shown in Table 1). 
The engine dynamometer testing simulated a light duty pickup truck operating on the 
EPA city and highway and US06 driving schedules. No engine calibration or hardware 
changes were made in addition to piston changes to vary compression ratio.  

Compared to the E10 standard configuration tests, the E20 fuel with high compression 
ratio demonstrated 5% reduction in CO2 emissions on all driving schedules with similar 
volumetric fuel economy (mpg) results. E30 fuel and high compression ratio showed 5% 
reduction in CO2 on the city and highway schedules and 7.5% reduction on the high 
speed and load US06 schedule, while fuel economy was 3% lower on the city and 
highway schedules and about equal on US06. 

 
Based on brake mean effective pressure (BMEP) data, the 96-RON E20 enabled a 1.9 
increase in compression ratio and increased thermal efficiency without reaching the 
engine knock limit due to higher RON and the increased charge cooling and increased 
sensitivity of the higher ethanol content. The data indicated that a higher compression 
ratio could have been tolerated with E30, perhaps demonstrating additional 
improvements in efficiency, CO2 and fuel economy, but that condition was not tested.  

																																																								
5	Leone, T., Anderson, J. et al., Fuel Economy and CO2 Emissions of Ethanol-Gasoline Blends in a 
Turbocharged DI Engine, SAE 2013-01-1321, April 8, 2013.	

Table 1.   Test Fuel Properties – SAE 2013-01-1321 
Fuel E10 E20 E30 

Ethanol (%v) 10.2 20.4 31.5
NHV (MJ/kg) 41.5 39.7 37.7
HoV (MJ/kg) 0.41 0.48 0.55
Specific Gravity 0.743 0.749 0.755
RON 90.8 96.2 100.7
MON 84.1 86.1 87.9
AKI 87.4 91.1 94.3
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Although little data existed in the literature, an approximately 4% to 5% increase in 
engine efficiency was measured as a result of increasing the compression ratio by 1.9 at 
part load conditions most important for typical drive cycles. Notably, this study 
demonstrates that the loss in energy content of E20 compared to E10 was more than 
offset by the increase in compression ratio, such that the volumetric fuel economy (MPG) 
and driving range were similar to the baseline condition. 

2.2 SAE 2013-01-1634 
 
In another 2013 study by Ford and AVL Powertrain Engineering, a 5.0L direct injection 
turbocharged V8 engine was tested on an engine dynamometer at part load conditions on 
E0 gasoline and 100% ethanol (as a substitute for E85) to compare and understand 
ethanol related engine efficiency improvements reported in previous studies.6 Properties 
of the E0 and E100 test fuels are shown in Table 2 below, with E85 also shown for 
comparison. Single cylinder engine modeling was also used. An approximately 4% 
improvement in Brake Thermal Efficiency was measured. Major contributors were cooler 
exhaust gas due to charge cooling related to the higher heat of vaporization of ethanol 
and lower adiabatic flame temperature.  An approximately 7% lower CO2 emissions were 
measured, with 4% of the reduction due to improved thermal efficiency and 3% due to 
the higher hydrogen to carbon ratio (lower carbon content) of ethanol. For other ethanol-
gasoline blends, the study indicated that the fundamental thermal efficiency and CO2 

emissions benefits would scale approximately linearly with the molar fraction of ethanol 
in the blend. These benefits are in addition to opportunities for improved efficiency, 
which are available due to the greatly improved knock resistance of ethanol-gasoline 
blends. The study helped to explain the fuel economy and CO2 implications of increased 
ethanol content in ethanol-gasoline blend fuels, and its conclusions are expected to be 
generally applicable to automotive engines with minor variations due engine and fuel 
system design. 
 

Table 2. Test Fuel Properties – SAE 2013-01-1634 
Fuel Gasoline E85 E100 

Ethanol (%v) 0 82.7 100 
RON 90.7 109 109 
MON 83.4 90 90 
H/C (mole) 1.83 2.72 3.0 
NHV (MJ/kg fuel) 43.4 29.2 26.9 
HoV (kJ/kg fuel) 350 850 920 
Density (kg/L) 0.748 0.785 0.796 
 

 

 

																																																								
6	Jung, H., Shelby, M., Stein, R. et al., Effect of Ethanol on Part Load Thermal Efficiency and CO2 
Emissions of SI Engines, SAE 2013-01-1634, April 8, 2013. 
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2.3 SAE 2014-01-1228 

A more recent Ford and AVL Powertrain engine dynamometer study tested a 3.5L direct 
injected turbocharged V6 engine7 with similar fuels and engine compression ratios to the 
2013 study referenced above. Compared to the 2013 study, a 13.0:1 compression ratio 
(CR) was added to the 10.0:1 standard and 11.9:1 ratios. As in the previous study, the 
engine dynamometer testing simulated a light duty pickup truck. Also, several octane 
“matched blend” fuels were added to the E10 91 RON base fuel, E20 96 RON and E30 
101 RON splash blended fuels from the previous study. For the matched blend fuels, 
hydrocarbon properties were adjusted in the E20 and E30 fuels to maintain constant 91 
RON and MON. Two additional fuels were tested, an E85 108 RON and E10 98 RON 
(also called E10 premium). As predicted in the previous study, the 101 RON E30 fuel 
enabled the 13:1 CR with better knock performance than the E10 91 RON base fuel and 
standard 10:1 CR. No knock benefit was exhibited in the 91 RON E20 and E30 matched 
blend fuels compared to E10 91 RON. 

 
Compared to the E20 96 RON fuel, the E10 98 RON (or E10 premium) fuel enabled the 
11.9 CR with similar knock behavior. Both fuels would be expected to have similar tank-
to-wheels CO2 emission while the E20 96 RON would be expected to have an advantage 
in well-to-tank and overall lifecycle CO2. The E10 premium fuel would have about 3.6% 
better volumetric fuel economy due to higher energy content and a slightly higher knock 
limit near MBT due to higher RON, while the E20 96 RON showed an advantage in 
knock behavior at full load BMEP. 
 
CO2 emissions were substantially reduced with the E20 96 RON and E30 101 RON fuels 
compared to the E10 91 RON base fuel. 

  

																																																								
7	Leone, T., Anderson, J., Stein R. et al., Effects of Fuel Octane Rating and Ethanol Content on Knock, 
Fuel Economy, and CO2 for a Turbocharged DI Engine, SAE 2014-01-1228, April 1, 2014. 

Table 3. Properties of Splash Blended Test Fuels in SAE 2014-01-1228 
 Splash Blends Match Blends 

Fuel E10- 
91RON 

E20- 
96RON 

E30- 
101RON 

E10- 
91RON 

E20- 
91RON 

E30- 
91RON 

E10- 
98RON 

E85- 
108RON

Ethanol (%v) 10 20.4 31.5 10 20.5 29.5 9.8 84.3 

RON 90.8 96.2 100.7 91.8 90.6 90.7 99.0 ~108 

MON 84.1 86.1 87.9 84.1 83.2 82.7 91.4 ~90 

H/C (mole) 2.00 2.08 2.18 2.11 2.11 2.20 2.18 2.89 

NHV (MJ/kg) 41.5 39.7 37.7 42.0 40.1 38.6 42.5 29.0 

HoV (MJ/kg) 0.41 0.48 0.55 0.41 0.48 0.54 0.41 0.86 

Specific Gravity 0.743 0.749 0.755 0.735 0.749 0.760 0.725 0.777 



	 7

 

Table 4. Reduction in CO2 Emissions 
Cycle 96-RON E20 with 11.9 CR 98-RON E30 with 13.0 CR 
EPA City/Highway 4.8-5.1% 6.0% 
US06 4.9-5.7% 9.1% 
 
The matched blend fuels showed only modest (less than 1%) CO2 reductions similar to a 
Flexible Fuel Vehicle that is optimized for 91 RON fuel. While the E20 96 RON fuel had 
about 4% less energy content than the E10 91 RON base fuel, the efficiency benefit at 
11.9 CR more than offset the lower energy content such that volumetric fuel economy in 
MPG and driving range were essentially equivalent. For the E30 101 RON fuel and 13.0 
CR, the efficiency benefit mostly offset the lower energy content such that MPG was 
reduced about 2% for the EPA city/highway schedules and improved by 1% for the US06 
test. 

2.4 2015 National Academy of Sciences (NAS) Study8 
 
The NAS study, released in 2015, reviewed the technologies that would be used to meet 
EPA and NHTSA’s 2017-2025 model year standards, and the agencies’ modeling efforts. 
The report made a number of recommendations to the agencies to consider for the mid-
term TAR.  
 
The NAS report did review several fuel consumption reduction technologies that were 
not considered in the final 2017-2025 rule. One of the technologies evaluated was a “high 
compression ratio with high octane gasoline”.  
 
The NAS concluded that: 
 

At part load, up to 3 percent reduction in fuel consumption for naturally aspirated 
engines might be realized if compression ratio is increased from today’s typical 
level of 10:1 to approximately 12:1, which is approximately a 1.5 percent 
reduction in fuel consumption per 1.0 compression ratio increase. 

  
The NAS further estimated an incremental direct manufacturing cost for strengthened 
pistons and reduced engine tolerances of $50-$100 for a compression ratio increase on 
regular fuel (no octane increase), and $75-$150 to implement increased compression 
ratios on high octane regular fuel. The variation in cost is based on engine/car size. NAS 
did not estimate the cost to increase compression ratio on a high-octane mid-level ethanol 
blend. Our discussions with auto manufacturers have indicated they think there is very 
little, and perhaps no cost to increase compression ratio for a mid-level ethanol blend, and 
that this is a very attractive option to reduce GHG emissions.    
 
  

																																																								
8	“Cost, Effectiveness and Deployment of Fuel Economy Technologies for Light-Duty Vehicles”, National 
Academy of Sciences, Table S.2, ISBN 978-0-309-37388-3, 2015. 
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2.5 2015 E, S&T Study by Leone, Anderson, Davis, Iqbal, Reese, Shelby, and 
Studzinski9 

 
This 2015 literature review covered a number of very relevant topics related to the 
driving forces for evaluating engine, vehicle, and fuel changes. In particular, the paper 
points out that increased fuel economy requirements are leading to engine design changes 
such as increased turbocharging, cylinder deactivation, downsizing and down-speeding, 
and all of these changes are leading to increased engine operation at higher loads, where 
engines are knock-limited (in other words, further trends in these directions cannot 
continue unless the knock-limited region is reduced). The paper further evaluates recent 
developments in measuring and characterizing octane measurements and their effect on 
engine knock resistance.   
 
An empirical expression was developed that allows the estimation of expected vehicle 
efficiency, volumetric fuel economy, and CO2 emission benefits for future vehicles 
through higher compression ratios for different assumptions on fuel properties and engine 
types. The method utilized data from a 3.5 L GTDI engine tested with CRs of 10:1, 
11.9:1, and 13:1 run on an engine dynamometer.  The method describes 3 types of 
efficiency gains from higher octane ethanol fuels – an efficiency improvement due to the 
use of higher compression ratios, an efficiency gain due to engine downsizing, and an 
efficiency gain from ethanol itself, which is related to the chemical properties of ethanol, 
including its higher heat of vaporization.  
 
Table 5 shows these estimated efficiency gains, tailpipe CO2 reductions, and fuel 
economy changes for a 96-RON E20 and a 101-RON E30, relative to a 91-RON E10.  
For the 96-RON E20 fuel, the efficiency gain from compression ratio is 3.48%, with 
0.5% from higher ethanol content and 0.35% from downsizing. These values are higher 
for a 101-RON E30 fuel. The estimated CO2 reduction for the E20 fuel is -4.5% and for 
E30 is 7%. There is little change in volumetric fuel economy for either fuel, as the 
efficiency gain basically counteracts the reduction in ethanol energy content.  
 

Table 5. Estimated Benefits of Higher Octane Ethanol Fuels Estimated in Paper 
(Relative to 91-RON E10) 

Parameter 96-RON E20 101-RON E30 
Efficiency gain from higher compression ratio 3.48% 5.35% 
Efficiency gain from higher ethanol content 0.51% 1.07% 
Efficiency gain from downsizing 0.35% 0.54% 
Total efficiency gain 4.4% 7.0% 
Tailpipe CO2 change -4.5% -7.0% 
Fuel economy change 0.6% -1.2% 
 
 

																																																								
9	“The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine 
Efficiency, Leone, Anderson, Davis, Iqbal, Reese, Shelby, Studzinski, Environmental Science and 
Technology, 2015, 49, 10778-10789.	
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2.6 July 2016 Study by Oak Ridge National Laboratory (ORNL) 
 
Considerable engine and vehicle based research has been performed in the past several 
years at the US Department of Energy Oak Ridge National Laboratory (ORNL) to 
determine the potential efficiency and performance benefits of high octane mid-level 
ethanol fuel blends. A recent report documented the results of a dedicated vehicle test 
program using a current production 2.0L direct injection turbocharged Cadillac ATS, 
with driveline modifications to “downspeed” the engine by about 20% as one of many 
strategies to meet new fuel economy and greenhouse gas emission requirements. 10  
 
Engine “downsizing” was also simulated by testing the vehicle at 4,750 pound test weight 
common to a mid-size sport utility vehicle Test fuels ranged from 87 AKI base fuel to 
101 RON, and E0 to E30. The production 9.5:1 CR was used for this phase of the ORNL 
testing. Engine efficiency as measured by gasoline equivalent miles per gallon11 was 
improved by about 10% with the E30 101 RON fuel compared to the baseline vehicle 
condition and E10 87 AKI (91 RON) fuel on the US06 and the EPA highway fuel 
economy schedules. 
  
As a continuation of the ORNL high octane mid-level ethanol blend research, a vehicle 
based chassis dynamometer study is currently underway at ORNL sponsored by the 
National Corn Growers Association (NCGA) to evaluate CO2 emissions performance of 
a modified 2.0L direction injection turbocharged Cadillac ATS with E10 87 AKI regular 
grade gasoline and splash blended E25 98 RON fuel. Vehicle modifications include 
replacement pistons to increase CR from production 9.5:1 to 10.5:1 and driveline 
modifications to “downspeed” the engine by about 20%. Test conditions will include 
4,750- pound test weight to simulate a “downsized” engine installation in a light duty 
mid-sized utility vehicle. Based on several previously referenced research studies and 
numerous other studies in the public literature comparing current production engines and 
vehicles to increased CR with high-octane mid-level ethanol blend fuels, a demonstration 
of substantial CO2 emission benefits is expected. Test results from the study are expected 
near the end of the 2016 calendar year. 

2.7 GHG Emission Reduction Used for High Compression in This Study 
 
Most of the previous studies indicated a GHG emissions reduction in 4-8% range for 
E20-E30 fuels with RONs of 96-101. In this study, we will base our estimate of the GHG 
emissions reduction on the 2015 E, S&T paper, which developed comprehensive impacts 
for a 96-RON E20 and a 101-RON E30. The tailpipe GHG emissions change for a 98- 
RON E25 would be one-half of the reductions of these two fuels, or 5.75%. We will 
round this to 6%. In addition to 6%, we will estimate the impacts of reductions of 4% and 
8%.   

																																																								
10	West B. ORNL, McCormick, R. NREL, Wang M. ANL et al., Summary of High-Octane, Mid-Level 
Ethanol Blends Study, ORNL/TM-2016/42, July 2016. 
11 Fuel economy in MPG normalized to 97 RON E0 (93 AKI) fuel based on lower (volumetric) heating 
value. 
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3.0 Compression Ratio Costs and Fuel Costs 
 
3.1 Compression Ratio Costs 
 
The NAS study covered in the previous section estimated a $75-$150 cost for increased 
compression ratios for engines using higher- octane regular fuel (without ethanol). This is 
for improved pistons and rings and reduced tolerances. We also contacted automakers, 
and their impression was that costs of increased compression ratio would be near zero, 
especially if it were accomplished during normal engine re-design cycles. 12 
 
Table 6 shows costs estimated by EPA for various technologies for conventional vehicles. 
The last row shows the estimated effectiveness and cost of increased compression ratios. 
Increasing compression ratios on conventional engines appears to be one of the most 
effective, and least costly, alternatives to increasing engine efficiency.   
 

Table 6. Comparison of Increased CR with Other Technologies 
Technology Effectiveness (%) – EPA Total Cost ($) – EPA 

Improved Lubricants 0.5-0.8 3 
Engine Friction Reduction 1 2.0-2.7 46-123 
Engine Friction Reduction 2 3.4-4.8 101-254 

Cylinder Deactivation 3.9-5.3 130-230 
Intake Cam Phasing 2.1-2.7 49-97 
Dual Cam Phasing 4.1-5.5 100-214 

Discrete Variable Valve Lift 4.1-5.6 171-353 
Continuous Variable Valve Lift 5.1-7.0 256-512 
Increased Compression Ratio 6-7 75-150 (NAS) 

 
For the purposes of this analysis, we will assume a $100 total cost for increasing 
compression ratios for engines for a 98 RON E25 fuel.   
 
3.2 Fuel Costs - Forecasting Fuel Prices Through 2040 
 
The current version of EPA’s OMEGA model uses the Energy Information 
Administration (EIA) 2015 Annual Energy Outlook (AEO 2015) future forecast of retail 
gasoline to estimate the fuel savings (in 2013 dollars) that consumers realize as a result of 
more stringent fuel economy standards. In order to add a new technology of high 
compression spark ignition engines and high-octane fuels to the OMEGA model, it is 
necessary to use the information in AEO 201513 to establish forecasts out to 2040 for 

																																																								
12	During	a	Co‐OPTIMA	Stakeholder	“Listening	Day”	held	June	16‐17,	2015,	several	auto	makers	
indicated	that	“if 100 RON was available today, manufacture of compatible engines would be a given.” 
“Co-Optima Stakeholder Listening Day Summary Report”, US Department of Energy, National Renewable 
Energy Laboratory, June 2015. 	
13	The prices for retail gasoline and wholesale ethanol are shown in AEO 2015 for select years only. The 
year-by-year values were provided by EIA directly. The assumptions used in generating these numbers 
were found in the document “Assumptions to the Annual Energy Outlook”, EIA, September, 2015.	
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high-octane regular gasoline with its octane boosted to premium gasoline levels using 
additional ethanol. 

3.2.1 Methodology 

The two relevant values forecast in AEO 2015 are the retail price of gasoline, and the 
wholesale price of ethanol. For the retail price of gasoline, this is the forecast average 
price for all blends of gasoline (except E85) and includes all local, state and federal taxes 
($0.44 a gallon) and product markups ($0.15). The wholesale price of fuel ethanol is 
forecast out to 2040 assuming that the volumes of the RFS are met with the following 
exception:  

The RFS is included in AEO2014, however it is assumed that the schedule for 
cellulosic biofuel is adjusted downward consistent with waiver provisions 
contained in the law.  

In order to forecast the future costs of mid-level blend fuel, the following steps need to 
occur. The first is that the wholesale price of regular grade (87 AKI octane) gasoline 
needs to be determined based upon AEO prices of “Retail Gasoline.” This involves 
unbundling two effects: the removal of taxes and markups from the retail price, and the 
price impact of premium grade fuel and other ethanol blends on the retail price. 
Ultimately, it was concluded that these factors could not be unbundled using data from 
EIA alone, so the average of the weekly price differential between regular and premium 
blendstock from May 5, 2014 to August 22, 2016 published by Oil Price Information 
Service was used. This constant ($0.26 a gallon) is used to both convert the AEO 2015 
price for all grades of retail gasoline (primarily regular grade and plus premium grade 
E10) into regular grade E10. The retail price for gasoline shown in AEO 2015 marks up 
the wholesale price for federal, state and local taxes and retail mark-up. These total $0.59 
a gallon.14  

The second step is that the price of E10 84 AKI gasoline blendstock needs to be 
determined. With the wholesale price of both E10 (10% ethanol and 90% gasoline 
blendstock) and ethanol known, it is a simple calculation to determine the implied price 
of the blendstock. The formula is PB = (PE10 - 0.1 X PE) / 0.9 where PB is the price per 
gallon of the blendstock, PE10 is the price per gallon of E10 and PE is the price per gallon 
of ethanol. 

Once the price of the 84 AKI gasoline blendstock is known, the wholesale cost of a 25% 
ethanol 75% gasoline blend can be determined using the formula PE25 = (0.25 X PE) + 
(0.75 X PB) where PE25 is the wholesale price per gallon of E25. Adding back in the $0.59 
per gallon wholesale to retail constant provides the retail price for E25. 

Results of this analysis are shown in Table 7.  

	  

																																																								
14	“Assumptions to the Annual Energy Outlook,” Energy Information Administration, September, 2015. 
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Table 7. EIA Price Analysis if E25 versus E10 

 

Table 6 shows that, generally, over the projection until 2040, E25 is about 4 cents per 
gallon lower than E10. In the time period of 2012-2016 using historical data, E25 would 
be 6 cents per gallon lower than E10. If E25 is 4 cents lower than E10 over the lifetime of 
a 2025 vehicle, assuming a 45 mpg fuel economy, a 7% discount rate, and the OMEGA 
mileage accumulation rates for a passenger car, the NPV of this credit for E25 is $132.23. 
At 6 cents per gallon lower, the credit for E25 is worth $198.35. 
 
3.2.2 Factors That Could Impact These Forecasts 
 
These price forecasts were developed to enable the modeling of a scenario in which a 
minimum octane standard would be established that would enable automakers to increase 
the compression ratio of spark ignition engines at the least possible cost.  Automakers 
have shown that a mid-level gasoline-ethanol blend with a Research Octane Number 
(RON) of at least 98 has nearly optimal CO2 reduction and cost per mile15 which is 
comparable to today’s premium grade E10 gasoline. A 98 RON fuel can be produced 
using today’s regular grade gasoline blendstock by increasing the 10% ethanol to 25%, or 

																																																								
15	USCAR data shown in the presentation “The Increasing Importance of Fuel Octane,” Tom Leone, Ford 
Motor Company at the Society of Automotive Engineers Industry/Government Meeting, January 2016. 
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E25. While blends between E20 to E40 have been evaluated, this analysis focuses on E25 
as typical of a high-octane low carbon fuel formulation.  
 
In order for automakers to be comfortable in significantly increasing the compression 
ratio of their engines, however, they would need to be assured that there was no danger of 
that engine inadvertently operating on lower octane fuel. This would require either 
foolproof misfueling prevention devices or an end to the sale of low octane fuel.  For 
purposes of this analysis, it is assumed that, like the sale of leaded gasoline in the 1970’s, 
EPA would establish a minimum octane rating of 98 RON and set a date after which low 
octane fuel could no longer be marketed. Or, smart cars and smart fuel pumps would 
communicate in such as way that cars requiring E25 would not use anything but E25. In 
any event, this analysis evaluates a long-term steady state situation where fleet turnover 
to E25 vehicles is nearly complete.  
 
In this analysis, the AEO 2015 prices were used to create these scenarios. Factors that 
could impact the values calculated for this study include: 
 
 Changes in fuel volume that could increase or decrease the forecast fuel price. For the 

scenario where regular low octane E10 is replaced with a high octane regular grade 
E25, the volume changes involved would be an increase in the demand for ethanol 
and a decrease in the demand for regular grade gasoline blendstock. In this scenario, 
the amount of the shift in volumes is relatively minor (15% of regular gasoline 
blendstock would be replaced with ethanol after the minimum octane standard 
became mandatory). There is a 15% increase in ethanol volumes from 2012 to 2040 
already built into the AEO 2015 numbers and hence these price forecasts. Also, the 
historical record shows that, between 2007 and 2015, ethanol production increased by 
127% while the price of ethanol decreased by 37%. There are a number of reasons to 
believe this relative price insensitivity would apply to the additional volume of 
ethanol required to change E10 into E25, including: 
 

o Research underway at the federal level to develop technologies that would 
reduce the cost of converting cellulosic feedstock to $3 a gallon gasoline 
equivalent. 

o The recent Billion Ton report indicating that there are significant volumes of 
harvestable biomass. 

o Idle former sugar cane farms in the Western Hemisphere that could easily be 
brought back into production. 

 
Consequently, this analysis uses the AEO 2015 price forecasts for ethanol to hold true 
under either scenario. 
 

 Changes to infrastructure necessary to enable the scenarios. The infrastructure 
changes to replace E10 regular with high octane E25 regular, however, are not too 
complex. A 2012 study by Stillwater Associates to evaluate the distribution costs of 
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E30 by calendar year 2017 found that distribution costs would range between 0.2 
cents and 0.5 cents per gallon, depending on the method used.  16 

 
Overall, the forecasted prices for E25 in this study are likely not to be significantly 
affected by consideration of volume and infrastructure costs.  
 
3.3 Total Costs of Increased Compression Ratio and Lifetime Fuel Credit 
 
As indicated in section 3.1, we are assuming a $100 cost for increasing compression ratio 
of vehicles. However, the lifetime NPV fuel credit (using 7% discount rate) in section 
3.2.1 is $132.23. For fuel distribution cost, assuming a 0.4 cent per gallon cost, the 
lifetime NPV cost (assuming 7% discount) is $13.22.  The costs and credits 
approximately balance each other, therefore for the remainder of this analysis we are 
estimating zero net cost to the consumer.  
 
 
 
 
 
 
  

																																																								
16	The Cost of Introducing an Intermediate Blend Ethanol Fuel for 2017- and- Later Vehicles, study for Air 
Improvement Resource, Inc, Stillwater Associates, October 17, 2012.  



	 15

4.0  Incorporating HCR with HOLC fuel into EPA’s OMEGA Model 
 
This section explains how we incorporate HCR/HOLC into EPA’s OMEGA model, and 
how the results compare with EPA’s default results. We start by examining EPA’s results, 
then we explain the method used, and finally we show the results of HCR/HOLC versus 
the EPA defaults.  
 
4.1 EPA’s Results 
 
Table 8 shows the draft TAR per vehicle costs to meet the 2025 standards, relative to the 
2021 model year standards. For GHGs in model year 2025, the costs range between $894 
(ICM case) and $1,017 (RPE). These values are directly from Table ES-2 of the TAR.   
The values reported for the Primary Case reflect the use of Indirect Cost Multipliers 
(ICM). The sensitivity case utilizes Retail Price Equivalents (RPE). The CAFÉ values 
reflect RPE values and include civil penalties estimated to be incurred by some models. 
For the GHG analysis, average costs range between $894 and $1,017.  
 
Table 8. Per Vehicle Average Costs to Meet Model Year 2025 Standards; Draft TAR 

Analysis Costs are Shown Incremental to the Costs to Meet the Model Year 2021 
Standards 

 GHG in Model Year 2025 CAFÉ in Model Year 2028 
 Primary Case RPE Analysis Primary Case ICM Analysis 
Car $707 $789 $1,207 $1,156 
Truck $1,099 $1,267 $1,289 $1,096 
Combined $894 $1,017 $1,245 $1,128 
 
In the first step of incorporating HCR with HOLC fuel into OMEGA, AIR first replicated 
EPA’s analysis. With some effort and EPA’s assistance, AIR was able to replicate EPA’s 
result for the GHG Primary Case in 2025 exactly. Some of the key outputs of this 
analysis are shown in Table 9.  
 

Table 9. Key Outputs of the 2025 Primary GHG Case (Uses ICMs) 
Item Value 

Vehicle sales 16,419,435 
Total cost ($) $23.4 billion 

Average Cost (relative to 2014 model year) $1,425 
Average cost (relative to continuation of 2021 

model year standards) 
$894 

CO2 Target (g/mi) 198.83 
Final CO2 (g/mi) 197.79 

 
The total cost of the 2025 model year emission standards is 23.4 billion dollars, and the 
average cost relative to the 2014 model is $1,425. This is higher than the $894 in the 
Table 8, because Table 8’s costs are relative to the continuation of 2021 standards, where 
Table 9 costs are relative to the reference vehicle, a 2014 model year vehicle.  The 2021 
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average vehicle cost increment we estimated is $531.01, so $1,425-$531.01 = $893.33. 
Thus, we have been able to replicate EPA’s analysis.  A number of cases were run where 
we replicated the EPA results exactly.  
 
The aggregated results above are estimated from the OMEGA model, which predicts 
technologies that will be on all cars and light duty trucks to meet the required tailpipe 
GHG emission standards. There are 2,819 separate vehicle models for all manufacturers 
in the OMEGA model. Every vehicle model is associated with a vehicle type, of which 
there are 19 separate types. OMEGA creates up to 50 likely technology packages, which 
consist of groups of technologies, for every vehicle type. These 50 groups are actually 
developed by a separate part of the model called the Lumped Parameter Model (LPM). 
The OMEGA model basically computes the least cost solution to meeting GHG standards 
for each manufacturer, utilizing all of its models. There can also be more than one 
technology in the final solution for each vehicle model. The model applies the most cost-
effective technologies first, and then continues to apply technologies across different 
models until the manufacturer meets its emission standard.   
 
Table 10 shows the technologies that are predicted by the OMEGA model to be present 
on a 2025 Buick Enclave. OMEGA predicts that several technology packages will be 
present on 2025 Buick Enclaves, however, in reality this may not be realistic (the detailed 
technologies present on these Technology packages are shown in Attachment 1). 
Nonetheless, this is what OMEGA predicts.  
 

Table 10. Technologies on a 2025 Buick Enclave Predicted by OMEGA  
(Central Case using ICMs) 

Tech Pkg Powertrain Type Sales fraction Weighted average cost 
9 MHEV-48V 25% $2,146 
10 MHEV-48V 55% 
11 ATK 20% 

MHEV = mild hybrid electric vehicle 
ATK = Atkinson cycle engine 
 
4.2 Implementation of HCR/HOLCF 
 
The next step was to incorporate HCR/HOLCF. In the previous section (Section 3), we 
estimated a primary case GHG benefit for HCR/HOF of 6%. In this analysis, we will 
estimate the impacts of a 4%, 6%, and 8% benefit. Also in the previous section, we 
evaluated costs of the high compression ratio technology, the HOLCF fuel, and fuel 
distribution costs, and concluded that the net costs of these 3 items are zero. So, we are 
estimating the impacts of 3 benefit cases – 4%, 6%, and 8%. 
 
Our first thought was to introduce HCR in the OMEGA model as a new, single 
technology. However, this technology would not have been recognized by the model and 
integrated into the existing technology packages without extensive work, so we had to 
develop an alternative solution.  
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Our approach was to  (1) classify each technology as a conventional vehicle (CV), hybrid 
electric vehicle (HEV), Atkinson cycle engine, or battery electric vehicle (BEV), and (2) 
apply the HCR benefit and costs only to conventional vehicles and Atkinson cycle 
engines not associated with an HEV, and (3) re-run OMEGA to determine the cost 
differences. We explain this process using the example of Buick Enclave below, 
assuming a 6% reduction in emissions for a HCR engine, with zero net cost.  
 
The first eleven technology packages for Vehicle Class 8 (midsize MPV V6) are shown 
in Table 11. Technology Package 0 is the starting point for every vehicle class.  The 
actual technologies for the first 11 Enclave technology packages are shown in 
Attachment 1 (there are many more technology packages for Enclave, but we only show 
the first 11). There is no change in the CO2 emissions or cost for Technology 0 (the 
starting point). For Tech Package 1, the original CO2 is 327.3 g/mi. Our assumption is 
that because of its low cost and attractive effectiveness, high compression ratio would be 
included on all conventional technology packages from Tech Package 1 and higher. The 
CO2 emissions of Tech Package 1 are estimated by multiplying the CO2 emissions of 
Tech Package 0 by 6% (21.49 g/mi), and subtracting that value from the original Tech 
Package 1 value (327.3-21.49 = 305.81).  This process is carried on for all conventional 
vehicles, because our assumption is that all conventional vehicles would be equipped 
with high compression ratio engines.   
 

Table 11. Buick Enclave Technology Packages 
Tech 

# Type 
Original (EPA) 6%, $0 

CO2 Cost CO2 Cost 
0 Conv 358.1 $0 358.1 $0 
1 Conv 327.3 $333 305.8 $333 
2 Conv 306.3 $485 284.8 $485 
3 Conv 272.2 $505 250.7 $505 
4 Conv 260.7 $700 239.3 $700 
5 Conv 241.9 $1,275 220.4 $1,275 
6 Conv 252.7 $947 231.2 $947 
7 Conv 247.8 $1,269 226.3 $1,269 
8 ATK 231.9 $1,770 218.0 $1,770 
9 MHEV-48V 229.7 $1,882 229.7 $1,882 
10 MHEV-48V 216.7 $2,314 216.7 $2,314 
11 ATK 225.0 $2,017 211.5 $2,017 

 
Tech packages 9 and 10 for the Enclave are 48-volt mild hybrids. To be conservative in 
our analysis, we have applied no compression ratio reduction in emissions for these 
vehicles, even though they have an internal combustion engine that would probably 
benefit from a higher compression ratio engine. Tech package 11 includes an Atkinson 
cycle engine. Atkinson cycle engines in this context are assumed to have higher 
compression ratios due to intake and exhaust timing changes. Atkinson cycle engines 
already have higher compression ratios, however, with a higher-octane fuel, there is the 
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possibility that the compression ratio could probably be increased from the compression 
ratio they would be designed for with 87-octane fuel.  Thus, there would probably be an 
efficiency gain to higher compression ratios for Atkinson engines. Thus, we have 
modeled Atkinson engines by subtracting the 6% reduction in GHG emissions from the 
EPA CO2 emissions for that technology package. 17 Six percent of 225 is 13.5 g/mi, so 
the CO2 of Atkinson Enclave with increased compression ratio due to high octane fuel 
would be 211.5 g/mi.  
 
Note that applying the benefit of HCR in this manner is not diminishing the benefits of 
the other technology packages. For example, the difference in emissions between Tech 
Package 1 and Tech Package 2 is 21 g/mi CO2 in both cases. Also, in automatically 
applying HCR to all conventional technology packages, we are in a sense “forcing” the 
model to use HCR for all conventional engines. However, with zero or near zero cost and 
a 6% benefit, the model would have chosen to do that anyway, even if it had been coded 
as a separate technology. Finally, EPA utilizes a combination of the Lumped Parameter 
Model and the Alpha model to ensure that it is properly accounting for various synergies 
between different technologies; i.e., that one cannot just add percent benefits for a 
selection of different technologies to determine an overall Technology Package percent 
reduction. We have not put HCR through this fairly rigorous treatment. We have assumed 
that all of the non-HCR packages have gone through that process, and when we add HCR 
in, that the benefit is undiminished at 6%. We have also run sensitivity cases at 4% and 
8% for the reader to evaluate.  While the overall method we have used to model HCR 
may not be exactly what EPA would do in this circumstance because it does not utilize 
ALPHA modeling, physical simulations, and the Lumped Parameter Model, we believe 
the method represents a reasonable first approximation of the effects of higher 
compression ratios on OMEGA results.   
 
The results of this analysis are shown in Table 12. With higher compression ratio engines 
included, total costs of the 2025 model year standards are reduced from $23.4 billion to 
$16.8 billion. Sales18, CO2 targets and final CO2 levels are essentially identical.19  
  

																																																								
17	Some HEVs utilize Atkinson cycle engines. We have assumed no HCR credit for these engines used in 
HEVs, only ATK engines used without HEV technology.  
18	Reducing the cost of new 2025 vehicles by utilizing lower cost technology should result in some sales 
increase. For purposes of this analysis, however, it is not necessary to model these increases, so each 
scenario is modeled on the same sales basis. 
19	While final CO2 levels are the same with higher compression ratio engines, the GHG benefits of EPA’s 
GHG standards utilizing high compression ratio engines enabled by high octane low carbon fuel would be 
greater than EPA’s benefits, because of upstream GHG benefits from the low carbon fuel. We have not 
quantified these upstream benefits in this analysis.  
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Table 12. Impact of HCR on Model Year 2025 Vehicle Costs 
 

Item 
Without Higher Compression 

Ratio 
With Higher Compression 

Ratio 
Sales 16,419,435 16,419,435 

Total Cost Billion ($) 23.4 16.8 
Average per vehicle cost 

$/vehicle 
$1,425 $1,021 

CO2 Target (g/mi) 198.83 198.83 
Final CO2 (g/mi) 197.79 197.75 

 
The results for the Enclave are shown in Table 13. The EPA default shows that 80% of 
Enclave sales in 2025 would be 48V mild hybrids and 20% would be Atkinson cycle 
engines, while the case with increased compression ratio shows that 100% of vehicles 
would be conventional (split 75% in Tech package 5 and 25% in Tech package 7).  
 

Table 13. Impact of HCR on Buick Enclave Model Year 2025 Technologies 

Run 
Tech 
Pckg 

Powertrain 
Type Sales 

Weighted 
Average 

Cost 
EPA Default 

(without higher 
compression ratio) 

9 MHEV-48V 25.00% 
$2,146 10 MHEV-48V 55.00% 

11 ATK 20.00% 

6%_$0 
5 Conv 75.00% 

$1,273 
7 Conv 25.00% 

 
 
Figure 1 shows the impact of HCR on 2025 model year sales percentages by powertrain. 
HCR reduces the conversions to Atkinson cycle and HEVs, but appears to have no effect 
on the percent of battery electric vehicles.  
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Figure 1 

 
 
 
Figures 2-5 further show the impacts of high compression ratio on 2025 model year fleet 
technology costs, average vehicle technology costs, average vehicle costs by powertrain 
type, and sales percentages by powertrain type.  
 
While it was necessary to make some simplifying assumptions to utilize the OMEGA 
model to obtain these results, we are confident that, if EPA had included this technology 
package in their OMEGA modeling for the mid-term review, they would have observed 
similar cost savings for the 2025 model year. The 2025 model year is significant for 
several reasons: 
 
 It is the last model year considered in the TAR. 
 It will be the baseline year for future greenhouse gas emission and fuel economy 

standards. 
 It is the first year that the Co-Optima program indicates a new high-octane fuel could 

reach the market.20 
 

It should also be noted that this analysis was performed to predict what EPA would 
estimate the potential cost-savings of this new technology would be in 2025. Therefore, 
we have retained the same assumptions regarding costs as EPA has used. Others, 
however, calculate costs differently. NHTSA, for example, estimates costs using the 

																																																								
20	From the TAR discussion of the Co-Optima program, page 5-42 “Two parallel research tracks focus on: 
1) improving near-term efficiency of spark-ignition (SI) engines through the identification of fuel 
properties and design parameters of existing base engines that maximize performance. The efficiency target 
represents a 15% fuel economy improvement over state-of-the-art, future light-duty SI engines with a 
market introduction target of 2025.” 
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Retail Price Equivalent Method of mark-up while EPA retains the use of the Indirect Cost 
Multiplier method. The NHTSA methods result in higher compliance costs than EPA. 
Therefore, it is quite possible that the actual cost savings will be much greater than the 
numbers predicted in this study. 

 

Figure 2 
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Figure 4 

 
 

 
Figure 5 

 
 
 
  

Conventional ATK HEV BEV Fleet
$0

$500

$1000

$1500

$2000

$2500

$3000

A
ve

ra
ge

 V
eh

ic
le

 T
ec

hn
ol

og
y 

C
os

ts

Powertrain

$8
84

$7
69

$7
37

$6
99

$1
64

3
$1

52
5

$1
45

2

$1
32

7

$2
73

8
$2

58
4

$2
43

1
$2

26
2

$1
93

0

$1
83

5
$1

79
4

$1
53

6

$1
42

5
$1

17
9

$1
02

1
$8

68

EPA

4%

6%

8%

Average Vehicle Technology Costs by Powertrain and Scenario
(MY2025 Relative to MY2014)

Air Improvement Resource, Inc.

Conventional ATK HEV BEV
0%

10%

20%

30%

40%

50%

60%

70%

80%

S
al

es
 P

er
ce

nt
ag

es

Powertrain

35
.1

%

50
.1

%

60
.0

%

71
.4

%

39
.8

%

28
.3

%

24
.2

%

16
.1

% 22
.5

%

19
.1

%

13
.3

%

10
.1

%

2.
6%

2.
5%

2.
5%

2.
4%

EPA

4%

6%

8%

Sales Percentages by Powertrain and Scenario

Air Improvement Resource, Inc.



	 23

6.0  Discussion 
 
This analysis has shown that if a high octane mid-level blend ethanol fuel such as 98-
RON E25 were an option for model year 2022-2025 vehicles meeting EPA’s GHG 
standards, overall program costs would be significantly reduced. There is no doubt that if 
this fuel were to be made widely available to the public, auto manufacturers would certify 
vehicles using it.  
 
Major inputs to this conclusion are (1) the magnitude of GHG emission reduction due to 
increased octane, (2) the cost of higher compression ratio plus the incremental cost (or 
savings) from the fuel, and (3) how implementing high HCR would affect the benefits of 
other types of technologies.  
 
We have estimated the tailpipe GHG emission reduction due to higher compression 
engines for the central case at 6%. This effectiveness is somewhat higher than most other 
technologies estimated by EPA, but it is not out of line, and in fact could perhaps be 
considerably higher. There is a significant amount of research currently being done to 
refine this estimate, and the type of fuel needed to obtain as much engine efficiency 
improvement as practical. Our cost for the increased compression ratio of $100 also does 
not appear out of line, as some manufacturers have indicated it could be much less if 
done as a part of normal engine redesign cycles. Our analysis of fuel costs indicates that 
the fuel could be provided for slightly less than the current cost of regular. At this point, 
we are not sure how implementing HCR would affect the benefits of some of the other 
technologies, but more work will probably be performed on this as well.  
 
Finally, another significant benefit of implementing a high-octane ethanol fuel with high 
compression ratio engines is that biofuel use would grow more significantly from today’s 
levels, thereby reducing upstream GHG emissions from transportation fuels, growing the 
GHG benefits of the Renewable Fuel Standard, and reducing US petroleum consumption. 
Thus, the overall GHG benefits of EPA’s 2022-2025 GHG standards with a high-octane 
low carbon fuel would be significantly greater than without a high-octane low carbon fuel.  
 
 
 
  



Attachment 1 
Detailed Technology Packages for the First 11 Tech Packages for the 2025 Buick Enclave 

 
TP Aero1 Aero2 ATK2 Deac-V6 DI EFR1 EFR2 EGR EPS I4 IACC1 IACC2 LDB LRRT1 LRRT2 LUB MHEV48V SAX-NA Stop-Start 
0     DI EFR1          LUB  SAX-NA  
1 Aero1    DI EFR1   EPS  IACC1  LDB LRRT1  LUB  SAX-NA  
2 Aero1    DI EFR1   EPS  IACC1  LDB LRRT1  LUB  SAX-NA  
3 Aero1    DI  EFR2  EPS I4 IACC1  LDB  LRRT2   SAX-NA  
4  Aero2   DI  EFR2  EPS I4  IACC2 LDB  LRRT2   SAX-NA  
5  Aero2   DI  EFR2 EGR EPS I4  IACC2 LDB  LRRT2   SAX-NA  
6  Aero2   DI  EFR2  EPS I4  IACC2 LDB  LRRT2   SAX-NA  
7  Aero2   DI  EFR2  EPS I4  IACC2 LDB  LRRT2   SAX-NA Stop-Start 
8  Aero2 ATK2 Deac-V6 DI  EFR2 EGR EPS   IACC2 LDB  LRRT2   SAX-NA Stop-Start 
9  Aero2   DI  EFR2  EPS I4  IACC2 LDB  LRRT2  MHEV48V SAX-NA  
10  Aero2   DI  EFR2 EGR EPS I4  IACC2 LDB  LRRT2  MHEV48V SAX-NA  
11  Aero2 ATK2 Deac-V6 DI  EFR2 EGR EPS   IACC2 LDB  LRRT2   SAX-NA Stop-Start 

 
TP TRX11 TRX21 TRX22 TURB18 TURB24 V6 VVLTD-OHC-I4 VVT WRnet- 1.5 WRnet- 2.5 WRnet- 5.0 WRpen- 0.0 WRpen- 2.5 WRtech- 1.5 WRtech- 5.0 
0 TRX11     V6  VVT WRnet- 1.5   WRpen- 0.0  WRtech- 1.5  
1 TRX11     V6  VVT   WRnet- 5.0 WRpen- 0.0   WRtech- 5.0 
2  TRX21    V6  VVT   WRnet- 5.0 WRpen- 0.0   WRtech- 5.0 
3  TRX21  TURB18    VVT   WRnet- 5.0 WRpen- 0.0   WRtech- 5.0 
4  TRX21  TURB18    VVT   WRnet- 5.0 WRpen- 0.0   WRtech- 5.0 
5  TRX21   TURB24   VVT   WRnet- 5.0 WRpen- 0.0   WRtech- 5.0 
6   TRX22 TURB18    VVT   WRnet- 5.0 WRpen- 0.0   WRtech- 5.0 
7   TRX22 TURB18    VVT   WRnet- 5.0 WRpen- 0.0   WRtech- 5.0 
8  TRX21    V6  VVT   WRnet- 5.0 WRpen- 0.0   WRtech- 5.0 
9   TRX22 TURB18   VVLTD-OHC-I4 VVT  WRnet- 2.5   WRpen- 2.5  WRtech- 5.0 
10   TRX22  TURB24   VVT  WRnet- 2.5   WRpen- 2.5  WRtech- 5.0 
11   TRX22   V6  VVT   WRnet- 5.0 WRpen- 0.0   WRtech- 5.0 

 
Abbreviation Description Abbreviation Description 

Aero1 Aero – passive SAX-NA Secondary axle disconnect; Not Applicable 
Aero2 Aero – passive with active Stop-Start Stop-start without electrification 
ATK2 Atkinson-2 TRX11 Transmission – step 1 or current generation 

Deac-V6 Cylinder deactivation V6 engine TRX21 Transmission – step 2 or TRX11 but with additional gear-ratio spread 
DI Gasoline direct injection TRX22 TRX21 with improved efficiency 

EFR1 Engine friction reduction level 1 TURB18 Turbocharging at 18/21 bar 
EFR2 Engine friction reduction level 2 TURB24 Turbocharging at 24 bar 
EGR Cooled exhaust gas recirculation V6 V-shaped 6-cylinder engine 
EPS Electric power steering VVLTD-OHC-I4 Discrete variable valve lift and timing on an overhead cam I4 
I4 Inline 4-cylinder engine VVT Variable valve timing 

IACC1 Improved accessories level 1 WRnet- 1.5 Weight reduction, net, 1.5% 
IACC2 Improved accessories level 2 WRnet- 2.5 Weight reduction, net, 2.5% 
LDB Low drag brakes WRnet- 5.0 Weight reduction, net, 5.0% 

LRRT1 Lower rolling resistance tires level 1 WRpen- 0.0 Weight reduction, penetration, 0.0% 
LRRT2 Lower rolling resistance tires level 2 WRpen- 2.5 Weight reduction, penetration, 2.5% 

LUB Engine changes to accommodate low friction lubes WRtech- 1.5 Weight reduction, technology, 1.5% 
MHEV48V Mild hybrid 48V WRtech- 5.0 Weight reduction, technology, 5.0% 
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425 Third Street SW, Suite 1150      Washington, DC  20024      www.EthanolRFA.org 

 
 
 
December 30, 2016 
 
Attention: Docket ID No. EPA-HQ-OAR-2015-0827 
 
U.S. Environmental Protection Agency 
1200 Pennsylvania Avenue, NW 
Washington, DC 20460 
 

RE:  Proposed Determination on the Appropriateness of the Model Year 2022-2025 Light-
Duty Vehicle Greenhouse Gas Emissions Standards under the Midterm Evaluation (Docket 
ID No. EPA-HQ-OAR-2015-0827) 

 
Dear Administrator McCarthy: 
 
The Renewable Fuels Association (RFA) appreciates the opportunity to comment on the above 
referenced Proposed Determination.  
 
RFA is the leading trade association for America’s ethanol industry. Its mission is to advance the 
development, production and use of fuel ethanol by strengthening America’s ethanol industry and 
raising awareness about the benefits of renewable fuels. Founded in 1981, RFA serves as the 
premier meeting ground for industry leaders and supporters. RFA’s 300-plus members are working 
to help America become cleaner, safer, more energy secure, and economically vibrant. 
 
In short, we were surprised and disappointed that the Proposed Determination was issued so 
quickly after the close of the comment period on the Draft Technical Assessment Report (TAR). We 
are troubled by the fact that the Proposed Determination fails to take into account many of the 
comments and recommendations submitted by affected stakeholders in response to the Draft TAR. 
More specifically, we are greatly concerned that, to date, the Midterm Evaluation (MTE) process has 
focused exclusively on vehicle and engine technologies in the 2022-2025 timeframe and has largely 
ignored the influence of fuel parameters (like octane rating) on fuel economy and GHG emissions. 
 
RFA and many other stakeholders provided detailed technical comments in response to the Draft 
TAR’s evaluation of the appropriateness of the Model Year 2022-2025 standards. We are concerned 
that our comments and recommendations likely were not reviewed as intensively as is warranted 
for a ruling that will have important consequences for the transportation and fuels industries over 
the coming years. Attached to this letter, we are again enclosing our comments responding to the 
Draft TAR; we encourage EPA to give our comments (and the submissions of other stakeholders) 
careful consideration before issuing a Final Determination. Furthermore, we recommend that EPA 
and NHTSA retain the original schedule for release of the Final Determination (i.e., April 2018); this 
would ensure adequate time for the agencies to fully review and incorporate the feedback received 
from stakeholders in response to the Draft TAR and Proposed Determination. 
 
Our concerns with the Draft TAR are extensive, and these issues were left unaddressed in the 
Proposed Determination. As outlined more fully in the attached comments, our most critical 
concerns with the MTE process to date include the following: 
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 Many of the advanced internal combustion (IC) engine technologies examined in the TAR 
and Proposed Determination Technical Support Document (TSD) implicitly call for liquid 
fuels with higher octane than is offered by today’s regular gasoline.  

 While the TAR and TSD examine various advanced IC engine technologies, they fail to 
simultaneously examine the fuels that enable those engine technologies. In general, the TAR 
and TSD fail to treat IC engines and liquid fuels as integrated systems, even though fuel 
properties can have significant effects on fuel economy and emissions.  

 The TAR and TSD ignore the influence on fuels of other public policies, like the Renewable 
Fuel Standard (RFS), aimed at reducing petroleum consumption and GHG emissions.  

 Pairing the advanced IC engine technologies examined in the TAR and TSD with high octane 
low carbon (HOLC) fuels with 98-100 RON octane would result in greater fuel economy and 
emissions benefits than considered by EPA and NHTSA.  

 Use of an ethanol-based HOLC in optimized IC engines would be the lowest cost means of 
achieving compliance with CAFE and GHG standards for MY2022-2025 and beyond.  
 

As underscored in the attached comments, consensus is building around the need for HOLC fuels to 
enable greater engine efficiency and reduce emissions. Published research has clearly 
demonstrated that HOLC fuels would enable high compression ratio engines and other advanced IC 
technologies, which would in turn improve engine efficiency and reduce emissions. 
 
The EPA clearly has authority to regulate fuel parameters that effect emissions, and thus the Agency 
should use the MTE process to introduce regulations that specify minimum octane ratings that will 
reduce emissions of CO2 and other pollutants and simultaneously facilitate greater fuel efficiency.  
RFA believes that adoption of new regulations governing octane levels could be done fairly quickly, 
and that the MTE should include the regulatory roadmap that the agencies, automakers and other 
stakeholders can follow to assure that gasoline in 2025 and beyond has the minimum octane rating 
required to enable proliferation of advanced IC engine technologies that improve fuel efficiency and 
slash automotive emissions. 
 
Thank you again for the opportunity to comment and we look forward to interacting further with 
EPA throughout the MTE process. 
 
 
Sincerely, 
 
 
 
 
Bob Dinneen 
President & CEO 
 
 
Attachment: Comments of the Renewable Fuels Association (RFA) in 
response to Notice of Availability of Midterm Evaluation Draft Technical 
Assessment Report for Model Year 2022–2025 Light Duty Vehicle GHG 
Emissions and CAFE Standards (81 Fed. Reg. 49,217; July 27, 2016) 
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EXECUTIVE SUMMARY 

A literature review was performed to provide an objective view of the existing body of 

research regarding the use of ethanol to produce high octane gasolines in the US and the 

impact of high octane fuels on modern spark-ignited engine efficiency. The review found 

that ethanol has several innate characteristics that make it amenable to increasing the 

compression ratio and therefore the efficiency of modern spark-ignited engines. Ethanol 

has lower energy content than gasoline on a per-gallon basis. However, when ethanol is 

splash blended to increase the octane rating of the finished gasoline, and advantage is 

taken of the higher octane by increasing the compression ratio of the engine, mid-level 

ethanol blends can offer similar fuel economy and driving range as gasoline. 

High octane, mid-level blends of ethanol ranging from 15-40% by volume are seen as 

offering the best trade-off between greenhouse gas (GHG) benefits and ease of 

implementation of fuel dispensing to achieve widespread availability. The National 

Renewal Energy Laboratory (NREL) concluded that since the UL already has a certification 

class for E25 dispensing equipment that is similar in price to E10 equipment, it would be 

the easiest to deploy and least costly of the high octane fuels. 

Ethanol is known to have a high octane rating of approximately 108 research octane 

number (RON), giving it a high resistance to engine knock. For comparison, regular grade 

E10 gasoline has RON values typically around 92 for most of the US. What is less well-

known, however, is that ethanol also has high sensitivity, meaning that in today’s high 

power density engines, which often run with retarded combustion timing, the performance 

level can be extended to a greater degree than is indicated by RON alone. Ethanol also has a 

heat of vaporization that is almost four times higher than gasoline when compared on a 

stoichiometric combustion air basis. This means that in direct injection engines, there is a 

charge cooling effect giving ethanol a “cooling octane number”  that is additive to it’s 

chemical octane rating. The energy density of ethanol, on the other hand, is lower than that 

of gasoline on a volumetric basis so that one gallon of E85 fuel typically has about the same 

energy as 0.75 gallons of gasoline without any ethanol. 

Numerous studies and technical papers from a wide variety of sources were examined for 

this literature review. A detailed bibliography of the studies reviewed is included with this 

report. The results from the studies reviewed generally support a main conclusion that 

splash blending ethanol is a highly effective means of raising the octane rating of gasoline 

and enabling low-cost efficiencies and reduced emissions in modern spark-ignition 

engines. For example, one study from an authoritative group of Original Equipment 

Manufacturers (OEM) scientists found that compression ratio increases leading to 

efficiency improvements of 5% for DI boosted gasoline engines could result from 

increasing the octane rating to 98 RON with 25% ethanol fuel. On the subject of emissions 
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impacts, one study noted GHG reductions of 6 – 9% depending on driving behavior with 

98-RON E30 fuel at equal performance levels in engines having compression ratio raised 

from 10:1 to 13:1. On the economics of high octane fuels, one study found that the refinery 

cost of increasing octane to 98 RON from 93 RON is only $0.02/gallon when ethanol is used 

as the means of increasing octane rating; however, the cost is $0.20 gallon when 

hydrocarbon octane sources are used. Finally, one group used EPA’s OMEGA tool for 

modeling the costs of achieving GHG standards for the 2025 model year and found that by 

adopting a 98 RON E25 fuel standard and increasing engine efficiency could result in a 

national cost savings of $7B or a per vehicle savings of $436 over continued use of regular 

E10 gasoline.  
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LITERATURE REVIEW OF ETHANOL USE FOR HIGH OCTANE FUELS 

1 INTRODUCTION 
The Renewable Fuels Association (RFA) has requested Ricardo to provide an objective 

review of the existing body of research concerning the technical merits of using ethanol as 

a blendstock to increase the octane rating of gasoline motor fuels sold in the United States. 

Furthermore, the Association is seeking a review of literature that examines how modern 

engine efficiency is impacted by the properties of ethanol-gasoline blends including the 

fuel’s octane rating, the heat of vaporization and the sensitivity of the fuel or the difference 

between it’s research octane number (RON) and motor octane number (MON).  

Ricardo will expand upon and update the review that was performed last year in 

preparation for the RFA to submit comments on the EPA’s Technical Assessment Report. 

This report embodies a new objective literature review articulating the technical issues 

regarding renewable fuels use in spark-ignited engines and motor vehicles. The report will 

examine in particular the effects on engine efficiency and performance through varying the 

fuel anti-knock index (RON + MON)/2, sensitivity (RON – MON) and the heat of 

vaporization. 

2 APPROACHES TO IMPROVING VEHICLE FUEL ECONOMY AND ENGINE 

EFFICIENCY 

Two main solution pathways to improving vehicle fuel economy and reducing CO2 

emissions have been outlined as the dominant approaches worldwide in recent years:  

 High-efficiency naturally-aspirated engines utilizing high compression ratio, 

modified inlet valve closing strategies, and/or cooled exhaust gas recirculation, for 

high efficiency at lower specific rating 

 Highly-boosted, downsized engines for part-load efficiency with relatively high 

specific rating 

The Magma concept described by Osborne (Osborne, et al. 2017) represents an attempt to 

combine high compression ratio and advanced valve-timing strategy with downsizing and 

boosting in a Miller cycle with advanced boosting strategies to obtain greater efficiency 

benefits without compromising full-load performance.  

Another main solution pathway is the hybridization of conventional internal combustion 

engines. This approach to improving vehicle and engine efficiency starts with simple engine 

start/stop strategies to reduce the amount of time the engine is idling and increases the 

amount of electric assist in an attempt to reduce the amount of time the engine is running 



C015568 
Renewable Fuels Association 
 
 

August 22, 2017 Page 7 

at low loads and make a shift towards operation at or near its peak efficiency point. 

Another added benefit of electrification is the ability to recapture the vehicle’s kinetic 

energy instead of wasting it producing heat. The hybridization approach is often combined 

with the first main approach of increasing the efficiency of naturally-aspirated engines by 

increasing the compression ratio and modifying the inlet valve closing event to minimize 

the pumping work at the lower loads, often called Atkinson cycle. In recent years, Atkinson 

cycle engines have also been implemented in non-hybrid vehicles, albeit with not as great 

an increase in compression ratio nor modification of inlet valve closing timing, such as the 

Mazda Atkinson-cycle engine (Weissler 2011). 

One more solution pathway to increasing efficiency is variable compression ratio, wherein 

the engine operates at high compression ratio at lower loads and switches to a lower 

compression ratio when high loads are called for. Variable compression ratio (VCR) has 

been researched for years (Boretti, Scalzo and Masudi 2011) with many different 

mechanisms being investigated but has only recently been developed to the point of 

production-intent by Nissan Motor Co. (INFINITI 2017), (autoblog 2016). The fuel economy 

benefits of 2-step and continuously variable VCR was examined by Shelby (Shelby 2017). 

The study estimated a 2-step VCR fuel economy benefit of 2.5-3.1% on the EPA metro-

highway (M-H) drive cycle and 0.8-1.2% on the US06 cycle relative to a fixed 10:1 

compression ratio engine. The benefit levels increased slightly for continuously variable 

VCR compared to 2-step to 2.7-3.3% on the M-H and more significantly on the US06 to 1.7-

2.1%. 

There are two key, fundamental mechanisms being addressed by the solution pathways 

outlined above: firstly, the compression ratio which at the most basic level controls the 

overall thermodynamic effiency of an engine cycle and secondly, the parasitic losses in an 

engine which limit the amount of useful shaft power that can be produced from the 

conversion of the fuel’s energy into heat. The parasitic losses can be further broken down 

into mechanical friction and pumping loss or engine breathing losses. Mechanical friction is 

mainly dependent on engine speed but pumping losses are mainly dependent upon engine 

load with higher losses being incurred at lower loads due to throttling as the primary 

means for controlling engine load in a spark-ignited (SI) engine. Pumping losses can be 

minimized through either early intake valve closure (EIVC) or late intake valve closure 

(LIVC) approaches for stoichiometric engines or by lean operation. There are challenges to 

keeping emissions in check with lean combustion systems and these approaches require 

lean NOx aftertreatment; nonetheless these technologies are showing promise in also 

achieving cost reductions as they continue to be developed.  

The optimal intake valve closure strategy has also been the subject of debate and research 

for some time (Boggs, Hilbert and Schechter 1995) with various outcomes depending on 
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whether it is applied to a naturally-aspirated or a boosted engine (Ferrey, et al. 2014). 

Comparisons between EIVC and LIVC have recently been made experimentally on an SI 

engine with the EIVC strategy showing slightly greater potential to improve engine 

efficiency at part-load conditions, although both approaches were better than the 

conventional throttled approach (Lanzanova, Nora and Zhao 2017). The major drawback of 

the EIVC strategy was longer combustion duration, and it is for this reason that Osborne et 

al. use a modified intake port to enhance the tumble motion when adopting the EIVC 

strategy for the Magma concept. 

3 LIMITATIONS ON EFFICIENCY IMPROVEMENT 

There are practical limitations to improving the efficiency of modern gasoline engines that 

fall into two categories: structural limitations and end-user acceptability limits. Structural 

limitations define the peak pressures within the cylinder and maximum material 

temperatures that can be tolerated. There are also limitations that come about from a 

vehicle user’s desire for comfort, namely the noise, vibration and harshness (NVH) 

experienced in the vehicle. These vehicle characteristics have been translated into 

engineering requirements on the engine in the form of limits on the rate of pressure rise 

and on the variation of average pressure over an engine cycle. Rate of pressure rise impacts 

the sound quality and harshness of sound that is emanating from the engine and the 

variation of average pressure has to do with the lower frequency vibrations that are 

transmitted through the vehicle structure and felt by the driver. Rate of pressure rise will 

be discussed more in the section on engine knock. 

The average pressure over an engine cycle is known as the mean effective pressure (MEP) 

and is used as a measure of the work produced per cycle. Variation of MEP represents the 

variation in work output from cycle to cycle and the coefficient of variation (COV) is 

therefore a measure of variability of work produced expressed as a percentage of the 

average work per cycle. The COV of IMEP then is used as a measure of the variation of work 

output or strength of combustion. The “I” before MEP simply means that it is indicated from 

the cylinder pressure diagram and is the maximum work that can be done by the 

combustion pressures acting on the piston top before friction and pumping losses are 

subtracted.  

There are two ways of expressing the IMEP for a 4-stroke engine: gross IMEP and net IMEP. 

Gross IMEP is calculated as the mean cylinder pressure averaged over all four strokes of 

the cycle including the intake and exhaust breathing strokes; net IMEP, or NMEP for short, 

is the mean pressure calculated only over the compression and expansion strokes of a 

combustion cycle, and is therefore a purer measure of the work obtained from combustion 

without reference to the intake and exhaust strokes. For this reason the COV of IMEP is 
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sometimes referred to as “combustion variability.” In either case, variation in IMEP is a key 

component of the forcing function for the vibrations that are felt in a vehicle and are 

especially noticeable at idle conditions where the average IMEP is small. Limits are set 

during engine testing programs for the COV of IMEP at 3% or less typically which 

represents an acceptable level of combustion variation that is derived from studies of what 

drivers perceive as tolerable levels of vibration within a vehicle. 

3.1 Engine Knock 

The most common phenomenon limiting gasoline engine performance and efficiency is 

commonly known as knock which tests all of the limiting  design factors and can result in 

severe engine damage if not properly controlled. The engine structure can be stressed well-

beyond design limits due to the very high cylinder pressures that are created with severe 

knock. The fact that knock is a very fast, localized heat release means that pressure waves 

are generated and can lead to very high heat transfer rates from the scrubbing action of the 

waves raising combustion chamber surface temperatures if it is prolonged. The fast heat 

release gives rise to pressure waves in the cylinder that are in the audible frequency range 

which excite the engine structure with a characteristic knocking sound. The audible 

knocking frequency range is much higher (as shown below by Naber (Naber, et al. 2006) in 

the section on knock measurement) than the low frequency COV of IMEP variations 

described above which are felt as vibrations in a vehicle. 

The theory behind knock was described by Draper (Draper 1933) in a NACA report as 

follows: “If a firecracker is exploded inside a closed drum containing air, two effects 

naturally follow: A series of sound waves is set up by the sudden local increase in pressure 

at the explosion and the general pressure within the drum rises because of the energy 

liberated. The frequency of the resulting sound waves will depend on the dimensions of the 

drum, the air pressure, and the position of the firecracker within the drum. It is reasonable 

to suppose that the process known as detonation in internal-combustion engines is similar 

to that taking place in the case outlined above.” Draper further developed the theory of 

knock in order to quantify its characteristics as illustrated in Figure 1.   
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FIGURE 1 PRESSURE WAVE PATTERNS IN A CYLINDER AS DESCRIBED BY DRAPER 
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Heywood (Heywood 1988, 462) described knock as emanating from “autoignition of the 

fuel-air mixture in the end-gas. Autoignition is the term used for a rapid combustion 

reaction which is not initiated by any external ignition source.” Naber have used both 

cylinder pressure transducers and accelerometers mounted on an engine block to compare 

alternative ways of measuring and controlling knock.  Figure 2 compares the cylinder 

pressure traces and the band-pass filtered signals (5-27 kHz) which were used to 

determine knock intensity. The frequencies of the filtered pressure signals correlates well 

with the modes of vibration originally developed by Draper. The knocking intensity was 

also quantified by Naber’s measurements and expressed as a pressure intensity for the 

amplitude of the filtered pressure signal or an accelerometer intensity based on the filtered 

accelerometer signal. 

 

FIGURE 2 CYLINDER PRESSURE TRACES FROM NON-KNOCKING (LEFT) AND KNOCKING (RIGHT) COMBUSTION EVENTS. (FROM 

NABER) 
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3.2  Low-speed pre-ignition and mega-knock 

Low-speed pre-ignition (LSPI) is another phenomenon related to to knock and occurs when 

enough heat is released before the spark can initiate a normal combustion event.  LSPI can 

lead to mega-knock  that can quickly destroy an engine; the results of low-speed pre-

ignition and mega-knock can be seen in the piston damage shown in Figure 3 from Mayer 

(Mayer, Hofmann and Williams, et al. 2016a) 

 

FIGURE 3 PISTON DAMAGE OCCURRING AS THE RESULT OF LOW-SPEED PRE-IGNITION LEADING TO MEGA-KNOCK (FROM 

MAYER, 2016A) 

The pre-ignition event, deflagration of the flame that was initiated by the spark, and mega-

knock are all apparent in the pressure diagrams shown in Figure 4. There are multiple 

causes for LSPI such as detached combustion chamber deposits or hot residual gas but this 

work undertakes developing a methodology to verify only oil induced pre-ignitions. Mayer, 

2016a clearly demonstrates that calcium detergent additives in engine oils were able to 

induce self ignitions whereas magnesium detergents failed to reach its critical temperature, 

as shown in Figure 5. 
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FIGURE 4 PRE-IGNITION LEADING TO MEGA-KNOCK AS SHOWN BY MAYER, 2016A 

 

FIGURE 5 PRE-IGNITIONS CAUSED BY CALCIUM DETERGENTS BUT NOT BY MAGNESIUM DETERGENTS (FROM MAYER, 2016A) 
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In a study on using enrichment with a DI injector with charge cooling to suppress very 

heavy knock levels (up to 40 bar), a trade-off was observed in which knock intensity first 

increased by up to 60% before lower unburned gas temperatures suppressed knock under 

extremely rich conditions (vafamehr, Cairns and Moslemin Koupaie 2017).  Such a trade-off 

is not usually observed in low-to-moderate knock intensity situations. The trade-off was 

associated with reducing auto-ignition delay times outweighing increasing charge cooling 

and ratio of specific heats. Ethanol was seen to be more effective than other fuels in 

reducing knock intensity. Overall, the results demonstrate the risks in employing excess 

fuel to suppress knock deep within a heavily knocking combustion regime (potentially 

including a super-knock regime). 

3.3 Testing limits imposed by knock 

The limitations on efficiency improvement, both structural and user acceptability limits, 

have been well understood and translated into engine-specific engineering criteria so that 

engines can be tested in a repeatable manner on an engine dynamometer.  Test procedures 

have been applied to determine the peak torque that can be achieved from an engine using 

different fuels. The basis of these test procedures is to identify the borderline knocking 

condition, that is the engine operating conditions where knock first becomes robustly 

detectable; an engine is operating at knock-limited conditions when borderline knock is 

detected. Test procedures such as these have been rigorously applied and are described in 

the following description adapted from Stein et al (Stein, Polovina, et al. 2012). 

Starting from a low load point and as inlet pressure and NMEP are increased, the engine 

becomes more knock-limited and spark timing must be retarded. As NMEP increases and 

combustion phasing is retarded, the exhaust temperature increases both due to the higher 

load, which reduces heat transfer per unit mass, and due to degraded efficiency, which 

results in increased energy in the exhaust gas. When exhaust gas temperature reaches its 

limit, lambda (defined as the air-fuel ratio divided by the stoichiometric air-fuel ratio) must 

be enriched to control exhaust temperature. Although turbocharged SI engines  typically 

have a 950°C turbine inlet temperature limit, it was found from experience that an exhaust 

temperature of 850°C on the single cylinder engine used in these tests corresponded to a 

multi-cylinder engine exhaust temperature of 950°C. Finally, as inlet pressure and NMEP 

are further increased, the peak cylinder pressure can also increase, depending on the 

amount of combustion phasing retard. Once the peak cylinder pressure reaches the 

engine’s structural limit, the spark timing must be retarded. A load sweep wherein these 

test procedures were applied and the specific limits for each constraining parameter is 

illustrated in Figure 6. In the top graph CA50 indicates the crank angle (CA) where 50% of 

the fuel is burned, representing the mid-point of combustion, and was set at 30° aTDC 

(after top dead center) as combustion stability tends to become unstable beyond that. In 
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the third graph from the top lambda is ideally equal to 1.0, except as needed to protect the 

exhaust turbine. 

 

FIGURE 6 APPLICATION OF TEST PROCEDURES AND LIMITS ON ENGINE PERFORMANCE (FROM STEIN, 2012) 

4 FUEL PROPERTIES 

4.1 Octane and anti-knock ratings 

Because engine knock is such a dominant factor in limiting the efficiency and performance 

of modern gasoline engines, it is important to understand the characteristics of fuels as 

they strongly influence the knocking tendency of SI engines. The tendency of gasoline fuels 

to resist knocking in an engine is known as the octane number. “Octane number is not a 

single-valued quantity and may vary considerably depending on engine design, operating 
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conditions …, ambient weather conditions …, mechanical condition of engine, and type of 

oil and fuel used in past operation. …Several octane rating methods have been developed. 

Two of these - the research method (ASTM D-2699)1 and the motor method (ASTM D-

2700) – are carried out in a standardized single-cylinder engine” (Heywood 1988, 471) 

under two specified sets of engine operating conditions giving a research octane number 

(RON) rating to a fuel, and a motor octane number (MON) rating to a fuel, respectively. The 

anti-knock index (AKI) then is the arithmetic average of the RON and MON numbers. 

It is important to understand the engine operating conditions for the RON and MON tests 

so applicability to today’s engines can be assessed. The RON and MON tests are both done 

in a variable compression ratio single-cylinder engine known as a “Cooperative Fuel 

Research (CFRTM) engine manufactured by GE Energy Waukesha,”2 (Stein, Polovina, et al. 

2012) but at different inlet conditions, engine speeds and spark timings as shown in Table 

1.  

TABLE 1 FROM STEIN, 2012 

 

“Carburetion is used for fuel introduction in these tests. For the RON test, the inlet air 

temperature of 52°C is set upstream of the carburetor.” (Stein, Polovina, et al. 2012) As a 

consequence the RON test more closely mimics the conditions of a port-injected engine 

where the fuel evaporation cools the fresh charge mixture in the intake port. “For the MON 

test, the inlet air-fuel mixture temperature of 149°C is set downstream of the carburetor.” 

(Stein, Polovina, et al. 2012) Consequently the MON test does not include any of the charge 

cooling effect from the fuel evaporation. That is why “many published papers … indicate 

that the knock resistance of a fuel in modern engines more closely realtes to RON.” (Stein, 

Polovina, et al. 2012) In direct injection (DI) engines, however, all of the fuel evaporation 

takes place within the cylinder, although much of the heat of vaporization may be picked up 

from the combustion chamber walls rather than the air charge for wall-guided injection 

                                                        
1 ASTM denotes American Society for Testing and Materials; the letter and number defines the specific testing 
code. 
2 The CFR engine manufacturing rights have been owned by CFR Engines, Inc. since 2014. 
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systems. Regardless of the type of DI injection spray however, it is the cooling of the fresh 

air charge in the cylinder that enables an increase in the amount of charge that can be 

inducted and an increase in the resistance to knock. 

Vertin (Vertin, et al. 2017) studied the effects of gasoline AKI at high altitude and found that 

vehicles operating with 85 AKI fuel showed strong evidence detected onset of knock earlier 

than when operating with 87 AKI fuel and used different engine control setting for knock 

avoidance. As a consequence they found all 5 of the tested vehicles showed some reduction 

in net power.  Williams (Williams, et al. 2017) found that, for Euro 5 and Euro 6 passenger 

cars, the benefits of moving to higher octane fuel were about double on the US06 test cycle 

than those observed for the WLTC test cycle. 

The octane index (OI) has been proposed as a better way to describe the anti-knock quality 

of gasolines in modern DI engines by Kalghatgi (Kalghatgi, Fuel/Engine Interactions 2013), 

(Kalghatgi, Head, et al. 2014) where  

𝑂𝐼 = (1 − 𝐾) ∗ 𝑅𝑂𝑁 + 𝐾 ∗ 𝑀𝑂𝑁 

The fuel’s sensitivity is the difference between its RON and MON ratings, or 𝑆 = 𝑅𝑂𝑁 −

𝑀𝑂𝑁, and the equation can be rewritten as  

𝑂𝐼 = 𝑅𝑂𝑁 − 𝐾 ∗ 𝑆 

For downsized turbocharged engines running at higher torque levels, the values of K have 

been found to be negative; i.e. the anti-knock performance of a fuel increases 

proportionally with RON and with fuel sensitivity. However, Stein (Stein, 2012) noted the 

values of K depend on the operating conditions of the engine, the fuel system type, and the 

fuel’s chemical knock resistance and heat of vaporization; K decreased with increasing 

evaporative charge cooling (e.g. as provided by DI fuel injection or higher ethanol 

concentration in the fuel) and with increasing combustion phasing retard, and K increased 

with increasing inlet temperature and increasing compression ratio. A recent study by 

Zhou (Zhou, et al. 2017) compared four different test methods for determining K. The value 

of K was found to be consistently negative at higher loads with DI. However, at part-load 

conditions, K was determined to approach 0.5. 

4.2 Chemical octane and charge cooling effects 

Recognizing not only the importance of a fuel’s ‘chemical’ octane rating as expressed by its 

RON and its sensitivity, but also a fuel’s heat of vaporization to further reduce the 

propensity to knock in DI engines, Stein, 2012 designed a set of experiments to cleanly 

separate the two effects. This was accomplished by comparing performance of a neat 

gasoline (E0) to an E50 blend made from the same 88 RON gasoline blendstock splash 

blended with 50 v% ethanol, first of all using an upstream fuel injection (UFI) system and 
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secondly with a DI injection system. Figure 7 shows the chemical octane effect by the 

difference between the red and green lines and the charge cooling effect by the difference 

between the blue and red lines. The chemical octane effect is seen by comparing the E50 

blend to the E0 gasoline, with octane ratings of X and Y respectively, where both fuels were 

fully evaporated before entering the engine by UFI. The charge cooling effect is seen in this 

case by comparing the same E50 fuel as introduced directly into the cylinder, thereby 

utilizing the full heat of vaporization of the ethanol blend by DI injection for charge cooling, 

to introduction of the fuel upstream with UFI injection which has no charge cooling in-

cylinder. 

 

FIGURE 7 SEPARATION OF CHEMICAL OCTANE AND CHARGE COOLING EFFECTS (FROM STEIN, 2012) 

As illustrated by the two black arrows at 16 deg aTDC CA50 timing, the maximum 

achievable NMEP at equal knock-limited combustion phasing increases from 5 bar to 15 

bar solely due to the chemical octane increase and from 15 bar to 24 bar exclusively due to 

the influence of increased charge cooling. 

4.3 Sensitivity to autoignition kinetics 

A fuel’s sensitivity (RON – MON) plays a profound role in its ability to resist knock and the 

anti-knock ability increases as combustion phasing is retarded from minimum spark 

advance for best torque (MBT). Mittal (Mittal, Heywood and Green 2010) explained that 

sensitivity is a measure of how much the autoignition kinetics of a fuel vary with the 

temperature of the unburned end gas, as shown in Figure 8. Note the logarithmic scale on 
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the y-axis to get a better sense of how much autoignition delay times can be impacted by 

temperature. Shorter delay times means the fuel-air mixture will reach it’s critical 

autoignition point (i.e. knock) sooner. Figure 8 also shows conceptually how a high 

sensitivity fuel exhibits much longer autoignition delay times at low temperatures 

compared to a low sensitivity fuel and therefore a reduced tendency to knock. The 

conditions where high sensitivity fuels exhibit this tendency include the end gas 

temperatures in DI engines and turbocharged DI engines with retarded combustion 

phasing. 

 

FIGURE 8 CONCEPTUAL ILLUSTRATION OF HIGH AND LOW SENSITIVITY FUELS KNOCKING TENDENCY (FROM STEIN, 2012) 

The sensitivity of the fuels as ethanol is blended in increasing percentage is shown in 

Figure 9 with ethanol having a high sensitivity value greater than 15. As can be seen in 

Figure 7, above, the reduction in slope of the curves as combustion phasing (CA50) is 

retarded is due to the high sensitivity of the autoignition kinetics of ethanol to unburned 

gas temperature. The effect of ethanol’s high sensitivity on the bending over of the CA50 vs 

NMEP curves is seen to a greater degree in Figure 10 with an E75 blend having an almost 

unlimited ability to resist knock as it’s curves tend to level off at increasing NMEP levels 

while not having reached the 30° aTDC retard limit yet, except for the UFI case. Notice also 

how the E0 gasoline, with a much lower sensitivity, displays very little if any bending of it’s 

curves. 
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FIGURE 9 FUEL SENSITIVITY VS ETHANOL PERCENTAGE (FROM STEIN, 2012) 

 

FIGURE 10 COMBUSTION PHASING VS NMEP FOR E0 AND THE E75 BLEND SHOWS GREATER BENDING OF THE CURVES THAN 

E50 (FROM STEIN, 2012) 
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A recent study using only E10 blends from Shell Global Solutions (Prakash, et al. 2017) also 

found that higher sensitivity fuels had a positive impact on engine thermal efficiency even 

though RON was more influential. 

4.4 Fuel and oil impacts on pre-ignition and mega-knock 

The influence of different ethanol fuels was investigated to analyze the effects of wall 

wetting in a DI engine on pre-ignitions (Mayer, Hofmann and Geringer, et al. 2016b) using 

the same methodology as outlined in Mayer, 2016a. In this study the fuel volatility was 

varied in order to change the amount of fuel impinging on the cylinder walls and mixing the 

oil film from the spray-guided DI fuel spray. They show that the number of pre-ignition 

events decreases up to 30 v% ethanol due to increasing heat of vaporization and charge 

cooling, but at 50 v% ethanol the rate of pre-ignition events rises drastically, Figure 11.  

 

FIGURE 11 EFFECTS OF ETHANOL CONTENT ON RATE OF PRE-IGNITIONS (FROM MAYER, 2016B) 

 It is hypothesized and then demonstrated that the effect of increased fuel impingement 

overwhelms the increased charge cooling effect as seen in Figure 12. The “E50specE30” 

fuel is a blend of the E30 test fuel mixed with neat ethanol to bring it up to 50 v% ethanol, 

with similar volatility curves as E50. It is also noted that the tendency for mega-knock 

events is greatly reduced relative to the frequency of pre-ignition events due to increased 

charge cooling at higher ethanol concentrations. 
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FIGURE 12 BASE FUEL AND FUEL IMPINGEMENT EFFECTS ON PRE-IGNITIONS (FROM MAYER, 2016B) 

From these experiments and others, Mayer, 2016b develop a model for the amount of 

liquid fuel that evaporates from 150°C up to the final boiling point to correlate almost 

perfectly with the rate of pre-ignition events as shown in Figure 13, reinforcing the 

hypothesis that droplets formed by fuel-oil mixture can be a significant contributor to pre-

ignition. 
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FIGURE 13 CORRELATION OF SPECIFIC FUEL VOLUME TO PRE-IGNITIONS (FROM MAYER, 2016B) 

4.5 Fuel Effects on Tailpipe and Evaporative Emissions 

Because of the rising use of ethanol around the 2007 timeframe, West (West, et al. 2007)  

acquired a Saab 9-5 flex fuel vehicle (FFV) that was certified to Euro 4 emissions. Taking 

advantage of ethanol’s greater anti-knock properties, Saab specified the turbocharged 

engine at 180 hp on E85, 20% higher than the gasoline power rating of 150 hp. European 

emissions regulations required certification on gasoline only, however US regulations 

required certification on both gasoline and E85, so the vehicle was tested on both fuels. As 

can be seen in Figure 14 the vehicle showed significantly lower NMHC+NOx and CO 

emissions over the US06 test cycle when fueled with E85 than with gasoline.  Stein (Stein, 

Anderson and Wallington, An Overview of the Effects of Ethanol-Gasoline Blends on SI 

Engine Performance, Fuel Efficiency, and Emissions 2013) note a CRC study (Haskew and 

Liberty 2011) which similarly found a statistically significant trend of decreasing NMHC 

and NMOG for US06. However there were no significant changes to tailpipe emissions 

noted on the other test cycles. Stein, 2013 also found lower PM emissions with increasing 

ethanol content. 
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FIGURE 14 EMISSIONS COMPARISON OF AN FFV RUNNING ON GASOLINE AND E85 (FROM WEST) 

The EPA regulates the vapor pressure of gasolines in order to limit the evaporative 

emissions from refueling and other sources on the vehicle. Ethanol-gasoline blends actually 

have the highest vapor pressure at 10 v% ethanol as shown in Figure 15. The EPA allows a 

“1 psi waiver” to E10 gasoline blends to encourage the blending of 10% ethanol in 

gasolines. Stein, 2013 notes that higher levels of ethanol are expected to have little impact 

on evaporative emissions in modern vehicles. 

 

FIGURE 15 REID VAPOR PRESSURE PEAKS AROUND 10% ETHANOL (FROM STEIN, 2013) 
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5 SOLUTIONS TO TREATING THE ENGINE & FUEL AS A SYSTEM 

5.1 Co-Optimization of Fuels & Engines (Co-Optima) Initiative 

Transportation accounts for 70% of U.S. petroleum consumption and 27% of the country’s 

greenhouse gas (GHG) emissions, and the internal combustion engines (ICEs) that generate 

most of these emissions will continue to power vehicles for decades to come. The U.S. 

Department of Energy’s (DOE’s) Co-Optima initiative is accelerating the introduction of 

affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a 

first-of-its-kind effort to simultaneously tackle fuel and engine research and development 

(R&D) (DOE 2016). 

The DOE has developed a ‘merit function’ in order to quantify the components of efficiency 

gain that can be expected from high octane fuels as used in high efficiency engines. “The 

merit function numerically represents the efficiency gain that can be expected compared to 

a “current market fuel”.” (Miles 2016) The contributing factors to efficiency gain are: RON, 

Octane sensitivity, heat of vaporization, flame speed, distillation and particulate emissions 

as expressed in the equation of efficiency merit: 

 

The intent of the merit function is to provide a guide to the DOE research teams to address 

two important questions: what are the important properties and where should efforts be 

focused? However, there are stated limitations to what can be achieved by the research 

being performed under the guidance provided through the merit function however. 

Specifically, those limitations of the merit function are:  

 Applicable only to stoichiometric SI engines 

 Considerably simplified (e.g. does not distinguish between NA and turbocharged 

engines) 

 Incomplete knowledge of the impact of many fuel properties (this is a major 

objective) 

 Lack of knowledge of blending effects on properties 

 Does not consider properties that do not impact efficiency (e.g. RVP) 

 Property interactions have not been investigated thoroughly (e.g. RON & HoV) 
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 Estimates only an “average” efficiency increase (e.g. does not consider drive cycle 

effects or different vehicle applications) 

Nonetheless, the merit function serves as a useful tool in assigning values to the various 

contributing factors of efficiency and guiding DOE research efforts. Co-Optima has also 

incorporated the viewpoints from multi-disciplinary stakeholder groups towards 

“accelerating the introduction of affordable, scalable, and sustainable fuels and high-

efficiency, low-emission engines.” Stakeholder groups participating in last year’s workshop 

included trade/consumer groups, petroleum industry, original equipment manufacturers, 

and the biofuels industry. 

5.2 Octane on Demand 

Professor John Heywood and co-workers at MIT (Cohn, Bromberg and Heywood 2005) first 

published the idea of using a high octane fuel such as ethanol only as needed to suppress 

knock while using a lower octane fuel for the rest of a vehicle’s needs in 2005. Their 

approach involved injecting ethanol directly into the cylinder at high loads for knock 

suppression and increasing the compression ratio to increase the efficiency of the engine at 

all operating conditions. The engine would run on gasoline at lower loads where knocking 

was not present which represents a majority of the time for average driving behaviors. 

Thus, a small amount of ethanol use was “leveraged” into a much greater savings of 

gasoline, to the tune of a 30% reduction in overall CO2 emissions from the gasoline 

efficiency savings combined with the lower CO2 from substituting ethanol for gasoline. 

The concept of leveraging high-octane ethanol into a greater reduction of gasoline use was 

applied by Stein (Stein, House and Leone, Optimal Use of E85 in a Turbocharged Direct 

Injection Engine 2009) to a Ford Motor Company EcoBoost® engine.  The engine was 

modified by adding a PFI system to the DI engine as shown in Figure 16 and by increasing 

compression ratio to 12:1. 



C015568 
Renewable Fuels Association 
 
 

August 22, 2017 Page 27 

 

FIGURE 16 ETHANOL LEVERAGING OF GASOLINE ON A FORD ECOBOOST V6 ENGINE (FROM STEIN, 2009) 

With the results from testing the engine on a dynamometer they simulated in an F150 

pickup truck how much E85 would be required for various drive cycles and overall fuel 

consumption. The study found that only 1% of the total fuel mass was required from E85 

on mild drive cycles like the EPA metro-highway (M-H) test cycle, and 16% on more 

aggressive US06 driving. However, on the very heavily-loaded scenario of driving up the 

Davis Dam road in Arizona for 10 miles with a fully loaded vehicle and trailer at it’s gross 

combined weight rating (GCWR) required nearly half the fuel mass to come from E85. 

TABLE 2 E85 USE FOR VARIOUS DRIVE CYCLES AND LOADING CONDITIONS (FROM STEIN, 2009) 

 

This concept is an example of what has been called “octane on demand.” While ocatane on 

demand offers a technically superior solution in terms of CO2 emissions savings and oil 

consumption reduction, it has the obvious drawbacks of needing two tanks of fuel on board 

and requiring vehicle drivers to fill the tanks with two different fuels. 
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5.3 Higher Octane Floor for US Regular Gasoline 

In marked contrast to the octane on demand approach which may be technically superior 

but has onerous requirements of vehicle operators, there is another approach to improving 

efficiency and reducing GHG emissions by treating the engine and fuel as a system that is 

being talked about more openly by automotive OEM executives. That approach makes use 

of the vehicle efficiency gains stemming from higher octane fuels and moves the onus from 

the vehicle operator to other stakeholder groups, as seen in part by participation in Co-

Optima’s workshops:  

 petroleum refining 

 biofuels industry 

 gasoline retailing 

In addition to these stakeholder groups needing to undertake changes to their business 

operations, the United States government would need to regulate (through the EPA), the 

changes to the gasoline fuels that would be required for use in future vehicles. 

Increasing the octane floor of regular grade gasoline sold across the US in order to take 

advantage of efficiency gains would require the petroleum refining industry to maintain 

existing octane ratings of their gasoline blendstocks, as noted by Hirshfeld (Hirshfeld, et al. 

2014). Leone (Leone, Anderson, et al. 2015) found that higher octane ratings for regular-

grade gasoline are an enabler for higher compression ratio, downsizing, turbocharging, 

downspeeding, and hybridization technologies and that “increasing compression ratios for 

future SI engines would be the primary response to a significant increase in fuel octane 

ratings.” Furthermore, they state, “higher ethanol content is one available option for 

increasing the octane ratings of gasoline and would provide additional engine efficiency 

benefits for part and full load operation,” as shown in Figure 17. 

 
FIGURE 17 ENGINE EFFICIENCY GAINS FROM INCREASING FUEL OCTANE RATING THROUGH ETHANOL CONTENT AND 

COMPRESSION RATIO INCREASES FOR A GTDI ENGINE WITH MODEST DOWNSIZING (FROM LEONE, 2015) 
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The biofuels industry would need to take steps to increase the production of ethanol in the 

US to meet the demand for high octane fuels. Increased production likely would come from 

both corn starch and cellulosic feedstocks, such as corn stover. Cellulosic biofuels are 

credited with reducing GHG by at least 60% under the Renewable Fuels Standard (RFS), 

which would further enhance the lifecycle carbon emissions benefits of a move to ethanol-

based high octane fuels. In addition, the gasoline retailing industry would obviously need to 

ensure the gasoline dispensing equipment is capable of storing and dispensing higher 

levels of ethanol content in gasoline.  

GM and Honda executives said that raising the octane level of pump gasoline in the U.S. is 

integral to optimizing advanced combustion engines now in development. At the 2016 CAR 

Management Briefing Seminars Dan Nicholson, VP of Global Propulsion Systems at GM, 

said, “higher octane fuels are the cheapest CO2 reduction on a well-to-wheels analysis (SAE 

International 2016). Fuels and engines must be designed as a total system.” Robert 

Bienenfeld, Assistant VP of Environment and Energy Strategy at American Honda agreed 

the industry must push for a higher fuel-octane floor in the U.S. prompting positive 

comments from EPA Director Chris Grundler, noting that the EPA is participating in the U.S. 

Dept. of Energy’s Co-Optima program and has a group working on gasoline octane levels of 

future fuels. 

Chow and coworkers at MIT (Chow, Heywood and Speth 2014) also examined the benefits 

of a higher octane standard gasoline for the U.S. light-duty vehicle fleet and found 

“ultimately by redesigning vehicles to take advantage of premium gasoline, fleet fuel 

consumption and GHG emissions can be reduced by 4.5-6.0% (for 98 RON-100 RON, 

respectively) over the baseline case, where no additional higher-octane vehicles are 

introduced.” 

In a 2017 SAE paper, Darlington (Darlington, et al. 2017) use GHG emissions savings 

estimates from Leone (Leone, Olin, et al. 2014) for high octane, low carbon fuel (HOLCF) 

paired with a turbocharged DI engine having it’s compression ratio (CR) increased to take 

advantage of the high octane mid-level ethanol blend fuels.3 Darlington, 2017 also cite 

Leone, 2015 and calculate an average benefit level for a 98-RON E25 blend as about 6% for 

most engines. In terms of vehicle range, Leone, 2014 also found that the 13:1 compression 

ratio engine gave similar driving range on a 101-RON E30 fuel than the baseline 10:1 

engine with regular E10 fuel. 

                                                        
3 The results of Leone, 2014 indicate that 96-RON E20 fuel enables an increase from 10:1 to 11.9:1 CR and 
101-RON E30 fuel enables a further CR increase to 13.0:1 with GHG benefits of roughly 5% and 6%, 
respectively, on the EPA city/highway cycle; however on the more aggressive US06 cycle the benefit level 
grows slightly for the 96-RON E20 but more substantially to 9% for the 98-RON E30.  
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5.4 Greenhouse Gas Emissions of High-Octane, Mid-Level Ethanol Blends 

The DOE (Theiss, et al. 2016) has recently published a summary of its efforts investigating 

the potential of High Octane Fuel (HOF) with 25-40% ethanol blends.  DOE investigators 

came together from Oak Ridge National Laboratory, National Renewable Energy 

Laboratory, and Argonne National Laboratory with the objective of providing a quantitative 

picture of the barriers to adoption of HOF and the highly efficient vehicles it enables, and to 

quantify the potential environmental and economic benefits of the technology. The results 

of these studies, considered together, show that HOF mid-level ethanol blends could offer 

significant benefits for the United States. These benefits include a 5-10% efficiency increase 

in vehicles designed for increased ethanol content and a miles-per-gallon fuel economy 

parity with E10. 

Furthermore, dedicated HOF vehicles exhibit nearly 15% lower well-to-wheels GHG 

emissions resulting from increased vehicle efficiency and corn ethanol production and use; 

future corn stover use shows potential to increase the well-to-wheels (WtW) savings to 

around 30%, Figure 18.  By increasing the percentage of ethanol in the fuel supply, the 

amount of gasoline consumed decreases, thereby further reducing the nation’s dependency 

on crude oil imports and enhancing U.S. energy security. 

 

FIGURE 18 WTW GHG EMISSIONS REDUCTIONS IN VEHICLES FUELD BY HOFS WITH DIFFERENT ETHANOL BLENDING LEVELS 

RELATIVE TO REGULAR GASOLINE (E10) BASELINE VEHICLES (FROM THEISS, 2016) 

Kwasniewski et al (Kwasniewski, Blieszner and Nelson 2016) also studied the impact on 

refinery GHG emissions for 10% and 30% ethanol blends with varying octane ratings. The 

study found that refinery GHG emissions decline 12% to 27% from a 2017 baseline for the 
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various 30% ethanol cases due to both the extensive effect of lower crude oil throughput 

and the generally-overlooked intensive effects of differences in the severity of refining 

operations. 

6 ECONOMICS OF HIGH OCTANE FUELS (HOF) 

There have been a number of recent studies related to the economics of increasing the 

octane levels by raising the ethanol content of gasolines sold in the U.S. and also the cost 

savings produced by HOLCF use in engines with increased compression ratios. 

To estimate the cost of a CR increase that is enabled by HOLCF, Darlington, 2017 cite a 

National Academy of Sciences study (National Academy of Sciences 2015) and average 

their cost range to get $100 for improved pistons and rings. The savings in fuel cost 

resulting from the change to HOLCF was estimated at a net present value of $132, and note 

that the incremental technology cost approximately balances out the fuel saving credit, 

using a net zero cost to the consumer. In exercising the EPA’s OMEGA model for the impact 

of HOLCF with high CR engines, Darlington, 2017 found the cost of meeting the model year 

2025 GHG emission standards is reduced on a national basis from $23.4B to $16.4B.  

Speth and associates at MIT (Speth, et al. 2014) modeled the potential macro-economic 

effects of transitioning to high-octane (98 RON) gasoline by 2040. They found that if high-

octane gasoline in appropriately tuned vehicles accounted for 80% of consumption in 

2040, a 3.0−4.4% reduction in total gasoline energy consumption could be achieved. This 

coincides with a 19−35 metric ton reduction in CO2 emissions in 2040. The direct national 

economic benefit of using high-octane fuel is estimated to be $0.4−6.4 billion in 2040, and 

rises to $1.7−8.8 billion if the social cost of avoided carbon emissions is included. 

Hirshfeld, 2014 created a model of the refining economics of US gasoline with particular 

focus on the octane ratings and ethanol content, Figure 19. The model also examined the 

impacts of these factors on CO2 emissions and crude oil use.  

 



C015568 
Renewable Fuels Association 
 
 

August 22, 2017 Page 32 

 
FIGURE 19 MODEL OF US GASOLINE REFINING AND BLENDING WITH ETHANOL (FROM HIRSHFELD, 2014) 

Using their linear programming model, Hirshfeld, 2014 examined two ways of increasing 

the octane of the finished gasoline: by increasing the octane of the petroleum blendstock 

for oxygenate blending (BOB) and by increasing the volume fraction of ethanol. As shown 

in Figure 20, increasing the ethanol content of the finished fuel is the lowest-cost means of 

achieving a higher RON rating. For example, to achieve a 98 RON standard with only 10% 

ethanol, the additional refining cost is approximately $0.20/gallon. However, a lower cost 

approach would be to achieve the 98 RON standard by adding 30% ethanol to the gasoline 

blendstock to make E30 at an additional refining cost of just $0.02/gallon—ten times less 

costly than the E10 scenario. Due to the efficiency increases enabled by higher octane fuels 

and the displacement of petroleum by ethanol, the study also found that using E30 to 

achieve a 98 RON standard would result in the reduction of refinery CO2 emissions by 3-

10% and the reduction of  crude oil throughput for gasoline refining by 3-8% compared to 

the case where E10 is used to meet the 98 RON standard. 

 
FIGURE 20 ADDITIONAL REFINING COST FOR VARIOUS RON LEVELS AND ETHANOL CONTENTS (FROM HIRSHFELD, 2014) 
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Relevant to the discussion over the economics of potential future high octane fuels is an 

analysis by the University of Illinois Department of Agricultural and Consumer Economics 

(Irwin and Good 2017), which looked at the historical economic value of ethanol in the 

gasoline blend. The authors state that previous analyses of ethanol’s economic value have 

often adjusted the market value to account for the lower volumetric energy content of 

ethanol relative to conventional gasoline blendstock for oxygenate blending (CBOB). They 

suggest that while ethanol generally has had a lower absolute price per gallon on average 

than CBOB, when adjusted for energy content, ethanol has often been more expensive than 

CBOB. However, one of the factors that has been neglected has been the value of ethanol as 

an octane enhancer in gasoline. Ethanol replaces costly aromatic compunds that are used to 

increase the octane of conventional gasoline made with CBOB. These aromatic octane 

boosters are sold at a significant price premium, called the “octane premium.”  An example 

of these two factors are shown in Figure 21 for the previous 10 year period at the U.S. Gulf. 

 

FIGURE 21 WEEKLY OCTANE PREMIUM AND ENERGY PENALTY FOR ETHANOL (FROM IRWIN, 2017) 

 According to the authors, ethanol’s “octane premium” value has typically offset its so-

called “energy penalty” over the past decade, as shown in Figure 24. 
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FIGURE 22 NET ENERGY PENALTY AND OCTANE PREMIUM FOR ETHANOL (FROM IRWIN, 2017) 

The authors calculated that the fuel ethanol contribution to gasoline provided a net cost 

reduction of nearly $7 billion dollars between 2008 and 2016. As this analysis is backward-

looking, it does not consider the further value ethanol will have in increasing the octane of 

the gasoline blend to enable high compression ratio engines, without significant refinery 

capital investment to increase octane production. 

Moriarty (Moriarty, Kass and Theiss 2014) have evaluated the implications on the gasoline 

distribution network of introducing high octane fuels containing 25% or more ethanol, 

identifying deployment issues that remain to be resolved. Fuel dispensing equipment is 

certified by the UL (UL LLC 2009) and currently available for E10, E25 and E85 fuels 

through UL 87A pathways. E25 equipment is very close in price to E10 equipment, in fact 

one manufacturer has stopped offering E10 equipment for sale, but there is a significant 

cost premium for E85 dispensing equipment. In order for service stations to dispense an 

E30 or E40 gasoline, some work remains to be done to assure that the appropriately 

validated dispensing equipment is available and installed. Moriarty, 2014 concluded that 

E25 would be the easiest and least costly of the high octane fuels to be deployed, because of 

the limitations of the existing dispensing equipment.  The majority of underground tanks 

were judged to be capable of storing ethanol blends up to E85, but there are concerns that 

many stations would need to add another tank to add a higher ethanol blend without 

eliminating an existing fuel. Lastly, the authors thought the largest barrier to 

implementation of mid-level ethanol blends is that service stations are not required to keep 

records of their equipment, so that many station owners are not aware of the capabilities of 

their equipment. 
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A market analysis was initiated by the DOE Bioenergy Technologies Office as part of a 

collaborative research program and summarized by Theiss, 2016 which developed eight 

deployment scenarios for vehicles adapted for use of High Octane Fuels. These scenarios 

were modeled by the Automotive Deployment Options Tool (ADOPT). Modeling results 

showed that E40 was the most likely blend to be accepted by consumers because of the 

lower costs for consumers and the large greenhouse gas emissions reductions for the 

automakers. This prediction contradicts the Moriarty, 2014 study which focused only on 

infrastructure implications and found that E25 is the most easily adopted blend because of 

existing dispenser certification levels. The model further predicted that more than 60% of 

light duty liquid fuel could be an E40 blend by 2035. More work will be needed to 

determine the most economically and technically viable pathway for increasing the ethanol 

content of high octane fuels. 

7 CONCLUSIONS 
Modern gasoline engines continue to be developed for ever greater fuel efficiency and 

performance levels, driven principally by light-duty vehicle standards for greenhouse gas 

emission and fuel economy. This literature review study found that fuel economy is being 

improved through the parallel pathways of engine boosting combined with downsizing and 

increased geometric compression ratio combined with modified inlet valve closing 

strategies. Both approaches, however, are limited by engine knock. The study also found 

that another technology that would enable further improvements in engine efficiency is the 

use of high-octane gasolines blended with ethanol. Gasolines having ethanol in the 15% - 

40% range can be blended to increase the anti-knock index (AKI = [RON + MON]/2) 

thereby enabling engine efficiency improvements.  

High octane, mid-level ethanol blends have anti-knock qualities that go beyond it’s simple 

AKI rating, however. Ethanol’s high sensitivity (S = RON – MON) and its high heat of 

vaporization means that engine performance and efficiency can be increased for direct 

injection (DI) engines more than is indicated by the RON value of the fuel.  

The results from the studies reviewed generally support a main conclusion that splash 

blending ethanol is a highly effective means of raising the octane rating of gasoline and 

enabling low-cost efficiencies and reduced emissions in modern spark-ignition engines. 
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