
A Spatial Modeling Framework to Evaluate Domestic Biofuel-Induced
Potential Land Use Changes and Emissions
Joshua Elliott,*,† Bhavna Sharma,‡ Neil Best,† Michael Glotter,∥ Jennifer B. Dunn,£ Ian Foster,†,£

Fernando Miguez,‡ Steffen Mueller,§ and Michael Wang£

†University of Chicago and Argonne National Laboratory Computation Institute, Chicago, Illinois 60637, United States
‡Iowa State University Department of Agronomy, Ames, Iowa 50011, United States
∥University of Chicago Department of Geophysical Sciences, Chicago, Illinois 60637, United States
£Argonne National Laboratory, Argonne, Illinois 60439, United States
§University of Illinois at Chicago, Illinois 60612, United States

*S Supporting Information

ABSTRACT: We present a novel bottom-up approach to estimate biofuel-induced
land-use change (LUC) and resulting CO2 emissions in the U.S. from 2010 to 2022,
based on a consistent methodology across four essential components: land availability,
land suitability, LUC decision-making, and induced CO2 emissions. Using high-
resolution geospatial data and modeling, we construct probabilistic assessments of
county-, state-, and national-level LUC and emissions for macroeconomic scenarios.
We use the Cropland Data Layer and the Protected Areas Database to characterize
availability of land for biofuel crop cultivation, and the CERES-Maize and BioCro
biophysical crop growth models to estimate the suitability (yield potential) of available
lands for biofuel crops. For LUC decisionmaking, we use a county-level stochastic
partial-equilibrium modeling framework and consider five scenarios involving annual
ethanol production scaling to 15, 22, and 29 BG, respectively, in 2022, with corn
providing feedstock for the first 15 BG and the remainder coming from one of two
dedicated energy crops. Finally, we derive high-resolution above-ground carbon factors
from the National Biomass and Carbon Data set to estimate emissions from each LUC pathway. Based on these inputs, we
obtain estimates for average total LUC emissions of 6.1, 2.2, 1.0, 2.2, and 2.4 gCO2e/MJ for Corn-15 Billion gallons (BG),
Miscanthus × giganteus (MxG)-7 BG, Switchgrass (SG)-7 BG, MxG-14 BG, and SG-14 BG scenarios, respectively.

1. INTRODUCTION

Global energy demand is projected to increase by over one-
third by the year 2050, driven predominantly by economic and
population growth in developing countries.1 Fossil fuels remain
the major source of energy worldwide, raising concerns about
both climate change due to CO2 emissions and energy
security.2 Biofuels have long been championed for their
potential to meet future energy needs in a secure and
sustainable way that furthermore supports rural economic
development.3 The Energy Independence and Security Act
(EISA) of 2007 mandates through the Renewable Fuel
Standard (RFS) an increase in biofuel use to 36 BG of ethanol
annually by 2022, of which 16 BG are mandated from
“cellulosic biofuel”. However, biofuels production to meet these
goals requires land for the cultivation of biomass feedstock, which
can displace other land uses. Quantifying shifts among land uses
and the corresponding change in carbon stocks has become a key
focus in the examination of the environmental merits of biofuels.
Despite extensive life-cycle analysis of corn ethanol focused

on land-use change (LUC) and technology advancement,4−6

LUC remains a contentious part of the calculation of net
greenhouse gas (GHG) emissions from corn ethanol. As

cellulosic ethanol moves toward commercialization, dedicated
energy crops like Miscanthus x gigantus (MxG) or Panicum
virgatum (switchgrass: SG) are among the most promising
feedstocks.7 Some studies have suggested that significant
amounts of cellulosic biofuels could be produced by dedicated
high-yielding grasses planted on marginal, fallow, or abandoned
former agricultural lands without causing major environmental
or economic consequences.8−10 Other studies have found that
large-scale feedstock production (whether corn or dedicated
grasses) will result in repurposing of existing agricultural lands,
primarily pasture.11,12

Given that LUC is a major source of GHG emissions13

among other potential environmental issues,14 various models
have been developed for or applied to the analysis of LUC and
its environmental impact. These models include (1) global
computable general equilibrium (CGE) models such as
GTAP15−18 and CIM-EARTH;19 (2) partial equilibrium and
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other economic-based models such as the POLYSYS
Agricultural Policy Analysis Center20 and FAPRI;21 and (3)
optimization models such as that developed by Gnansounou
and Panichelli.22 The first complete analysis of LUC emissions,
from Searchinger, et al.,11 estimated that corn ethanol would
double GHG emissions over 30 years as compared to the
gasoline it displaced. Subsequent studies found biofuel-induced
LUC and emissions to be significantly lower (see Table S-1 in
the Supporting Information (SI)).
LUC is a local phenomenon driven by large-scale economic

conditions. Different modeling approaches provide varying
results due to differences in modeling framework, assumptions,
input parameters, scenarios considered, and implementation at
the local, regional, national, and global level. In general,
equilibrium agro-economic models, sometimes also referred to
as “top-down” models because the approach uses macro-
economic theory with highly aggregate parametrizations, lack
the spatial resolution needed to identify critical areas of LUC
vulnerability and to provide insight into the local socio-
economic and biophysical factors that affect LUC.23

To address these limitations, we present results for three
biomass feedstocks (corn, MxG, and SG) using an approach
that estimates LUC and resulting emissions based on high-
resolution geospatial data and modeling (and is hence referred
to as a “bottom-up” approach). This approach is unique in that
the high-resolution enables a comprehensive and consistent
approach to key drivers of LUC emissions. These drivers include
the availability and suitability of land for biomass production and
the aboveground and belowground carbon lost during conversion.
We exclude protected lands from our assessment and incorporate
shrubland, a land class typically omitted in other studies. Based on
these high-resolution factors, we model county-level ethanol plant
siting and LUC decision probabilities and generate economically
plausible future biofuel production and LUC pathways at county
level. We evaluate the environmental costs of these pathways in
terms of land conversion, biomass loss, and CO2 emissions and
identify subnational LUC hotspots that can help policy-makers at
all scales craft targeted policy and incentive programs to mitigate
the LUC consequences of cellulosic ethanol.

2. MATERIALS AND METHODS

Figure 1 summarizes the methodology used for the present
study. We first combined data from multiple sources to create a
data set characterizing present-day land cover and availability at
30m spatial resolution over the conterminous U.S. (Section 2.1
and SI Section S-1). We used crop models driven by gridded

soil data sets and a combination of observed- and reanalysis-
based weather products to estimate land suitability in terms of
the average yields of corn, MxG, and SG (Section 2.2 and SI
Section S-2). Next, we combined the land-availability data set
with above and below ground carbon data to estimate changes
in carbon stock (Section 2.3, SI Sections S-3, and S-4). We
apply a stochastic partial equilibrium production allocation
framework to produce, for five scenarios (Sections 2.4 and SI
Section S-5), spatial distributions and probabilistic county-,
state-, and national-level assessments of potential LUC (Section
2.5 and SI Section S-7). Finally, we combine these different
elements to estimate total biofuel-induced LUC and its
associated GHG emissions (Section 3).

2.1. Availability of Land for Biofuel Feedstock
Production. State- and national-level protection policies
prevent conversion of significant amounts of natural land,
especially forest and wetland, in key areas around the country.
This protection can have a substantial effect on potential
biomass feedstock production and the distribution of biofuel-
induced LUC. Thus, a first step toward evaluating future LUC
is to determine what land is available: that is, what land is not
explicitly protected or engaged in high-value economic activity.
We used the 30 m spatial resolution National Land Cover Data
set (NLCD)24 and Protected Areas Database (PAD-US)25 to
determine available land and to characterize the existing cover
types on that land (see SI Section S-1 for details on these data
products and their use).

2.2. Suitability of Available Land for Biofuel Feed-
stock Production. Feedstock yield is a key determinant of the
spatial pattern of LUC and a key driver of both economic and
environmental sustainability for bioenergy pathways over the
long-term. To estimate the spatial distribution of grain and
biomass yields for corn, MxG, and SG, we ran the gridded yield
models pDSSAT26,27 and BioCro28 across the full contermi-
nous U.S. at 8−50 km spatial resolution, driven by historical
daily weather from 1980 to 2010 (see SI Section S-2 for more
details). For the corn yield simulations (SI Figure S-1), we used
the CERES-Maize model29 from the Decision Support System
for Agrotechnology Transfer (DSSAT). We used BioCro, a
generic vegetation model, to estimate potential MxG and SG
yields (SI Figure S-2). The model has been successfully tested
for these crops in Illinois27 and the yield assessments were
extrapolated for the regions with no published data available
considering the breeding efforts for those regions and
environmental conditions. These simulations can also be used
to anticipate changes to feedstock productivity and biofuel

Figure 1. Data flow diagram for LUC and resulting emissions analysis. The black boxes and arrows indicate inputs, the green boxes indicate
modeling or processing steps, the red boxes and arrows indicate outputs.
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sustainability in the future driven by technology or environ-
mental change.
2.3. Distribution of above and below Ground Carbon.

To characterize above-ground carbon, we combined the 30 m
resolution National Biomass and Carbon Data set (NBCD)30

for the year 2000 with the NLCD × PAD-US data set
developed for land availability analysis (see SI Section S-3).
Protected lands account for about 30% of the total above-
ground carbon stock and protected forests have on average
10.3% more above-ground carbon than available forests (SI
Figure S-3a and S-3b). Aboveground carbon estimates were
combined with soil carbon changes from Argonne National
Laboratory’s Carbon Calculator for LUC from Biofuels
Production (CCLUB) model,6 which is based on state-level
simulations with the CENTURY model.31,32 We assumed that
100% of the existing brush and undergrowth will be lost to the
atmosphere, 42% of the live aboveground tree carbon will be
permanently sequestered or offset by energy generation, and
100% of the live below ground tree carbon (stumps and roots) will
stay in the soil (this is modeled as part of the century soil carbon
changes). We further assumed that loss of forest means forgoing
12−19 MgC/ha in future sequestration (see SI Section S-4).
2.4. Multiscale Socio-Economic and Technological

Scenarios. To capture the different drivers of biofuel-induced
LUC, we combined local-scale (feedstock yield potential and
land-availability), medium-scale (ethanol plant size and delivery
radius scenarios), and large-scale (macro-economic scenarios)
LUC drivers in a single model. The five macro-economic scenarios
analyzed were: an increase in corn ethanol consumption from its
2006 level (4.9 BG) to 15 BG (10 BG of gasoline equivalent) in
2015 (Corn-15); an increase in consumption for ethanol
produced from MxG from near-zero in 2011 to 7 BG (4.67 BG
of gasoline equivalent) by 2022 (MxG-7) or 14 BG by 2022
(MxG-14), in addition to the 15 BG of corn ethanol demanded
by 2015; and an increase in consumption for ethanol produced
from switchgrass from near-zero in 2011 to 7 BG (4.67 BG of
gasoline equivalent) by 2022 (SG-7) or 14 BG by 2022 (SG-14),
in addition to the 15 BG of corn ethanol demanded by 2015.
In all five macro-economic scenarios, the rate of increase in

corn ethanol consumption follows the observed trajectory from
2006 to the roughly 14 BG of corn ethanol produced in 2011,
and then peaks at about 15 BG in 2015. Corn ethanol
conversion efficiency remains constant at 110 gallons/tonne
(2.8 gallons/bushel)33 and corn yield after 2011 is assumed to
increase linearly along the historical trend, implying an effective
growth rate of 1.3−1.5% per year. Every tonne of corn used for
ethanol production displaces 1/3 tonne of corn used for animal
feed through the sale of DDGS (Dried Distillers Grains with
Solubles)34 The demand for corn for animal feed in the U.S.
has been inelastic to price historically, with the exception of
recent years when DDGS provided a near perfect substitute35

Demand for corn for feed is thus assumed to return to historical
elasticity once corn ethanol and DDGS production flattens out
in 2015.36 Import and export demand for corn in the U.S. has
been largely flat for decades and is assumed to recover quickly
from the 2012 dip and remain inelastic and fixed at recent
historical values of 0.3 and 50 Mt, respectively.37 Demand for
corn for food products is observed historically to be the most
elastic component of total corn demand, and thus is modeled
with a price elasticity of −0.3.38 Annual percent change in corn
price is modeled as a function of the residual of corn
production and demand (i.e., the change in stock) each year,

which is well-correlated with price changes in the historical
record (R = 0.64; SI Figure S-4).
We assume that cellulosic ethanol production grows at a

constant annual rate in order to meet the scenario targets,
implying an average 38.2% annual growth to reach the 7 BG
target level in MxG-7 and SG-7 and 47.1% annual growth for
MxG-14 and SG-14. For comparison, production of U.S. corn
ethanol increased by an average of 21.6% annually from 2000 to
2011, with a maximum year-overyear rate of growth over the
period of 38.5% (in 2007). The growth rate assumption for
cellulosic ethanol is questionable due to challenges associated
with commercialization of cellulosic ethanol with respect to its
supply chain logistics and conversion technology.39 We
compared each ethanol production scenario against a baseline
scenario in which ethanol production is held constant. For the
Corn-15 scenario (summarized in SI Figure S-5), the baseline is
one in which ethanol production is frozen at 2006 levels
(Figure S-5b: see SI). For the cellulosic ethanol scenarios, we
use Corn-15 as the baseline.
For dedicated cellulosic feedstocks such as MxG and SG

there are no historical data sets and few existing markets.
Therefore, we assume for the latter scenarios that no other
major economic use for dedicated grass feedstocks arises in
future and thus that demand is determined strictly by the
assumed ethanol production trajectory. The primary model
assumptions instead concern biomass and ethanol supply
dynamics. We assume conversion efficiency of 105 gallons/dry
tonne for cellulosic feedstocks7 and average nameplate
production capacity in existing and installed cellulosic ethanol
plants of 30 MG/yr in 2012 (783 dry tonnes feedstock/day),
increasing to 150 MG/yr (3,913 dry tonnes/day) for plants
built in 2022. For MxG-7 and SG-7 scenarios, 60 new cellulosic
ethanol plants (Table S-2: SI) come into production between
2011 and 2022, with average capacity of 117 MG/yr (∼1.11
Mt/yr of cellulosic feedstock each). In the MxG-14 and SG-14
scenarios, 111 new cellulosic ethanol plants come into
production between 2011 and 2022, with average capacity of
126 MG/yr (∼1.20 Mt/yr of cellulosic feedstock each).
We used the bale-truck transportation cost per mile to

estimate maximum profitable transport distances for a given
biorefinery size.40 In all five scenarios, additional corn demand
in 2012 relative to the fixed corn ethanol baseline was estimated
as 91.8 Mt, while cellulosic ethanol feedstock demand in 2022
was 66.7 Mt in MxG-7 and SG-7 and 133.3 Mt in MxG-14 and
SG-14.

2.5. Stochastic Partial Equilibrium LUC Allocation
Model. We used the Partial Equilibrium Economic Land-use
(PEEL) modeling framework41 aggregated to county level
(hence PEEL-Co) for the present study. This multiscale
economic model uses a Monte Carlo approach to estimate
ethanol plant siting probabilities based on county-level land
availability, feedstock production suitability, and expected profit
(Figure 2 and SI Section S-5). It then generates LUC pathways
by allocating ethanol plants stochastically based on macro-
economic scenarios and plant siting probabilities and allocates
land conversion around sited plants based on profitability and
conversion costs. Cellulosic biorefineries are likely to be located
closer to biomass production sites due to the low bulk density
of biomass and resulting higher transportation cost.41,42 We
assumed a biorefinery-feedstock radius of 30−50 miles (48−80
km) as it is economically feasible to transport biomass from
distances in this range.43,44 We based the county selection for
location of cellulosic ethanol plants on simple measures of
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expected local feedstock capacity and knowledge/infrastructure
availability. (Specifically, we assumed that cellulosic plants were
more likely to be sited near existing plants, no matter what their
feedstock, because of needed ethanol transportation logistics.)
We assumed that ethanol plants can purchase biomass
feedstock at equal cost from anywhere within the delivery
radius. Finally we generate a Monte Carlo sample of 200
stochastic realizations for each scenario to generate county-level
conversion probabilities and ranges of LUC and emissions at
county, state and national level.
As the corn ethanol market is well-established, corn

biorefinery siting decisions were based on the prevalence of
existing corn production within a county and are assumed to
have small impact on the spatial pattern of overall land
conversions. Most U.S. corn ethanol plants are located in rural
and mixed rural counties due to raw material availability and the
proximity of byproduct users (livestock). The presence of
ethanol biorefineries can also affect management decisions of
local farmers such as substitution among crops, local
agriculture, land ownership and cattle production.45

After selecting a location for a new cellulosic ethanol plant, we
determine the necessary land conversions within the delivery radius.

We then use a stochastic profit optimization framework to
determine which lands converted for fuel crop cultivation. The
model assumes that technology in each county is well represented
by the distribution of simulated yields, and applies simple
assumptions for the distributions of input and land conversion costs.

3. RESULTS
3.1. Land Converted Directly to Biofuel Feedstock

Production. Table 1 shows the mean and upper and lower
bounds (95% confidence interval) for the amount of land
converted for each cover type in each of the five scenarios. The
land converted by cover class is categorized as either new
agricultural land or current cropland. New agricultural land
represents land that has entered the agricultural system as a
result of biofuel feedstock production; it includes transitions
from the forest, woody wetland, shrubland, and open grassland
cover classes. Current cropland includes land used for pasture,
grazing and fallow, and cultivation of other row crops that is
converted to biofuel crop production. We include pasture, hay
and fallow land under the cropland cover classification, as this
land category can be used for crops without any additional
improvements.

Table 1. Mean, Upper Bound and Lower Bound (95% Confidence Interval) For the Amount of Direct Land Conversion (Kha)
from Each Cover Type to Biofuel Crops in Each of the Five Scenarios

New agricultural land Current cropland

scenarioa
forest and woody

wetland shrubland open grassland
total new agriculture

land pasture/hay/fallow other row crops
new cropland

(ha per million gal)

mean CI mean CI mean CI mean CI mean CI mean CI mean CI

Corn-15b 549.4 559.5 126.2 129.3 1020.5 1032.8 1696.1 1721.6 1224.3 1232.8 644.8 652.5 56.5 57.4
541.3 121.1 1012.2 1674.6 1216.1 634.6 55.8

MxG-7 119.2 179.3 47.4 75.5 462.0 586.2 628.6 841.0 1690.4 1833.7 158.4 233.5 30.0 40.1
76.1 21.9 335.8 433.8 1539.3 91.6 20.7

SG-7 9.7 18.6 19.2 36.9 796.4 1048.9 825.3 1104.4 3859.7 4069.2 145.5 229.0 39.3 52.7
4.0 9.1 575.2 588.3 3668.2 77.4 28.0

MxG- 14 236.6 311.3 94.1 125.8 916.7 1096.0 1247.4 1533.1 3409.7 3617.0 322.9 441.0 29.6 36.4
169.5 58.5 766.5 994.5 3210.6 215.8 23.6

SG-14 19.0 31.7 37.7 59.6 1590.5 1944.1 1647.2 2035.4 7757.4 8074.7 281.3 413.7 39.1 48.3
9.5 19.5 1228.4 1257.4 7430.2 182.1 29.8

aResults for scenarios 2−5 include only the additional land-use changes from cellulosic ethanol fuel crops. bThe Corn-15 scenario measures LUC
over a period when corn ethanol production increased by 10 BG, from 5 to 15 BG.

Figure 2. Normalized plant siting probabilities for (a) Miscanthus and (b) Switchgrass.
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For the Corn-15, MxG-7, SG-7, MxG-14, and SG-14
scenarios (Table 1), our model estimates that the mean total
new agricultural land converted to biofuel crop production is
1696, 629, 825, 1247, and 1647 kha, respectively. For the corn-
15 scenario, 39% of the new agricultural land conversion was
from forest, woody wetland, or shrubland. For the switchgrass
scenarios (SG-7 and SG-14), only 4% of the new agricultural
land comes from these woody cover classes, whereas for the
Miscanthus scenarios (MxG-7 and MxG-14), approximately
27% of new land conversions from these classes. The share of
grassland is higher than that of forest, woody wetlands, and
shrubland cover classes for all scenariosa result that is
consistent with Wright and Wimberly12 who found that
grasslands declined by over 530 kha in the Western Corn Belt
(WCB) over the period 2006 to 2011, partially driven by corn
grown as a biofuel feedstock.
The mean total current cropland (pasture, grazing and fallow,

and other row crops) converted to biofuel crop production for the
Corn-15, MxG-7, SG-7, MxG-14, and SG-14 ethanol scenarios was
1869, 1849, 4005, 3733, and 8039 kha, respectively. Existing
cropland and pasture account for the major portion of total land
converted for biofuel feedstock production: 83% for SG-7 and
SG-14 and 75% for MxG-7 and MxG-14. For Corn-15, current
cropland accounts for 52% of the total land converted for biofuel
feedstock production. On average, 91% of conversions in current
cropland for the Miscanthus scenarios (MxG-7 and MxG-14)
come from hay, pasture, and fallow, and only 9% from other row
crops. Similarly, 97% of conversions in the switchgrass scenarios
(SG-7 and SG-14) come from hay, pasture, and fallow, and 3%
from other row crops. These results suggest that to support
biofuels targets, large shifts from cropland used for hay, pasture
and fallow to biofuel crop production will be required. The new
cropland requirement was 57, 30, 39, 30, and 39 ha/MG for Corn-
15, MxG-7, SG-7, MxG- 14, and SG-14, respectively.
Our model estimates that cellulosic plants are most likely to

be located in the midwest and along the Gulf and south Atlantic
coasts, mainly due to land and biomass availability and expected
profit (Figure 2). Conversion of new land for biofuel feedstock
in the miscanthus and switchgrass scenarios is concentrated in
the plains states and along the South Atlantic and Gulf coasts
(Figures 3a and 3b).
3.2. Direct LUC Emissions from Biofuel Feedstock

Production. We next converted the direct LUC estimates
from Section 3.1 to the associated CO2 emissions (Table 2).
The total direct LUC emissions for all scenarios were positive,

representing net GHG release. Our model estimates mean total
direct LUC emissions in the Corn-15 scenario of 4.43 gCO2e/MJ.
For new agricultural land, the mean total direct GHG emissions
for Corn-15, MxG-7, SG-7, MxG-14, and SG-14 are 4.62, 1.69, 0.2,
1.66, and 0.18 gCO2e/MJ, respectively. GHG emissions from
current agricultural land were negative for all scenarios, with an
approximate mean value of −0.17 gCO2e/MJ, signifying carbon
sequestration.
At the county level, estimated emissions for MxG-14 were

concentrated in the west south central, east south central, and south
Atlantic regions of the U.S., and for SG-14, carbon sequestration
was largely concentrated in the Midwest U.S. (Figure 4a and b).

3.3. Indirect Land Conversion and Associated
Emissions. In all scenarios, some part of the new land
required for feedstock production comes from existing
pastureland and some fraction of this pasture is likely to be
replenished from forest or shrubland, resulting in an indirect
LUC effect. Using GTAP results synthesized in the CCLUB
model,6 we estimated ranges for the fraction of lost pasture that
is likely to be replenished from subsequent conversions of
forest and shrubland to biofuel feedstock production. This
fraction depends strongly on the total amount of pasture lost to
feedstock, and was estimated as 0.25−0.50, 0.33−1.33, 1.0−2.1,
0.66−1.7, and 3.33−5.33 for Corn-15, MxG-7, SG-7, MxG-14,
and SG-14, respectively (see Figure S-7 and Table S-3 in the SI
for more details). The CCLUB model assumes that one-third
of domestic indirect conversion to pastureland comes from
shrubland; we make the same assumption here. We then used
these fractions to estimate the indirect loss of forest and the
resulting indirect LUC emissions that would occur as the result
of the different biofuel scenarios considered in the present
study (Table 3). Due to the relatively low yield of switchgrass
and substantial conversion of domestic pastureland, switchgrass
scenarios showed the largest indirect emissions effect from land
conversion compared to all other scenarios. The range of
foregone sequestration emissions was highest for the corn
ethanol scenario. Among the cellulosic ethanol scenarios,
miscanthus scenarios showed higher foregone sequestration
because of the higher forestland conversion (Table 3).

4. DISCUSSION

We have presented a bottom-up approach to the assessment of
the LUC and resulting GHG emissions that may result from
pressure for increasing biofuel demand. Our approach
combines high-resolution geospatial data and simulations of

Figure 3. New land converted (from forest, shrub, or grass land) to feedstock for (a) the MxG-14 scenario and (b) the SG-14 scenario.
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yield potential for existing and promising fuel ethanol feedstocks.
The simulation model consists of four essential components: land
availability, land suitability, LUC decision-making, and induced
emissions from land conversion. The modeling results showed that
switchgrass requires more land compared to miscanthus in all
scenarios due to relatively lower yield. It may be possible to blunt
these effects through improved breeding. In Nebraska, two new
switchgrass hybrids were found to have yields of 9.3 and 8.8 tons
per acre, 50% greater than their parent cultivars.46 Future high-
yielding switchgrass cultivars may well greatly reduce the amount
of land conversion needed to meet biofuel targets.
Regardless of technological change, biofuel production will

almost certainly require conversion of natural land, most likely
grasslands. This conversion can have negative impacts on the
environment and on biodiversity, while also increasing risk of
erosion, drought vulnerability, and threat to the natural
habitat.14 In addition, significant conversion from cropland
used for row crops, pasture, hay, and fallow will result in
additional LUC pressure from the livestock sector.47

Our results suggest that emissions factors vary significantly
across land types and counties, with forest and shrubland

having the highest values and grassland and pastureland the
lowest. In all scenarios, conversion of open grasslands tend on
average to cause small amounts of carbon sequestration,
although for the corn and MxG scenarios, this small amount of
sequestration was negligible compared to the loss of carbon
from woody cover types.
The switchgrass scenarios considered showed low direct

LUC carbon emissions. This apparently positive result arises
only because production of switchgrass was not profitable
enough to justify the large conversion costs associated with
transforming dense forest and shrubland for its cultivation.
Miscanthus scenarios showed higher direct LUC emissions
because its relatively high yields (and thus profits) make the
conversion of forest and shrubland economically feasible. This
result is contrary to previous studies,5 which did not consider
conversion costs.
Corn ethanol showed the highest GHG emissions due to a

more limited optimal growing area, greater soil carbon losses
due to the requirements of intensive management,4,5,32,48 and
the implications of high potential profits on forest and
shrubland conversion. However, estimates vary substantially

Figure 4. Average county-level direct LUC CO2 emissions from 200 stochastic scenarios for (a) the MxG-14 scenario and (b) the SG-14 scenario.

Table 2. Mean and Upper and Lower Bounds (95% Confidence Interval) for Direct LUC Emissions per MJ of Energy Produced
(Over 30 Years) In Each Scenarioa

new agricultural land

total LUC
forest and woody

wetland shrubland open grassland current cropland

emissions: gCO2e/MJ

scenario mean CI mean CI mean CI mean CI mean CI

Corn-15 4.43 4.54 4.14 4.23 0.49 0.50 −0.01 −0.01 −0.19 −0.18
4.34 4.07 0.47 −0.01 −0.19

MxG-7 1.54 2.35 1.42 2.19 0.30 0.51 −0.03 −0.02 −0.15 −0.12
0.89 0.88 0.15 −0.05 −0.18

SG-7 0.03 0.21 0.11 0.20 0.13 0.23 −0.04 −0.02 −0.17 −0.13
−0.13 0.04 0.06 −0.06 −0.21

MxG-14 1.51 2.01 1.40 1.85 0.30 0.41 −0.04 −0.03 −0.15 −0.13
0.99 0.98 0.19 −0.05 −0.17

SG-14 0.01 0.16 0.10 0.17 0.12 0.20 −0.04 −0.02 −0.17 −0.14
−0.11 0.05 0.07 −0.05 −0.20

aNegative values indicate a sequestration credit due to an expected increase in soil carbon.
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among studies due to assumptions related to use of corn and
DDGS for animal feed and their yield and price variation and
consumption response.5 The emissions uncertainty in past
studies appears to be due to varying assumptions about above
ground carbon stock, soil organic carbon stock, above ground
forgone carbon sequestration data for different land types, time
accounting method used to estimate emissions, and data
sources used to calculate emissions factors.5,49−51

In addition to the direct effects resulting from biofuel
production, there are significant indirect effects such as
intensification of agriculture, change in consumption, and
conversion of other land types.52 In the present study, we
considered the “price elasticity” for corn and crop switching
from wheat and soybean to corn, miscanthus, and switchgrass.
However, we did not consider possible indirect price effects
such as an increase in soybean and wheat prices due to reduced
supply, which could intensify land-use pressure for conversion
of natural land into soybean and wheat production.
The disparity in direct LUC emissions between SG-7 and

MxG-7 was compensated by indirect LUC pressure on forest
and shrubland as a result of large hay and pasture land
conversion for ethanol production. However, even with this
indirect effect we estimate that emissions are lower in SG-7
than in MxG-7. For SG-14, we conclude that indirect LUC
pressure due to the significantly higher loss of hay and pasture
lands will result in higher total LUC emissions than in MxG-14.
Finally, we propose two policy options that might be

exploited to reduce the LUC emissions from dedicated biofuel
crops. For miscanthus, the major cause of LUC emissions is
forestland conversion driven by strong economic incentives. To
control emissions, policymakers should consider mechanisms
to reduce incentives for forestland conversion or increase
incentives for low-carbon conversions of marginal lands. LUC
emissions from switchgrass stem primarily from the need to
replenish lost hay and pastureland. It may be possible to use
policy to make alternative marginal lands available that are not
currently used for animals. For example, switchgrass is an
approved fallow cover under the U.S. Conservation Reserve
Program (CRP) in many parts of the country. Allowing
controlled removal of switchgrass biomass from CRP lands for

bioenergy, without strongly affecting ecosystem benefits, could
be one such alternative.
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