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ABSTRACT

In 2010, the U.S. Environmental Protection Agency (EPA) released a life-cycle analysis of the green-
house gas (GHG) emissions associated with the production and combustion of corn ethanol. EPA
projected that by 2022, the emissions profile of corn ethanol from a new refinery would be 21%
lower than that of an energy equivalent quantity of gasoline. Since 2010, the 21% value has domi-
nated policy discussions and federal regulations related to corn ethanol as a renewable fuel and a
GHG mitigation option. It is now 2018 and new data, scientific studies, technical reports, and other
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information allow us to examine the emissions pathway corn-ethanol has actually followed since
2010. Using this information, we assess corn ethanol’s current GHG profile at 39-43% lower than
gasoline. We also develop two projected emissions scenarios for corn ethanol in 2022. These scen-
arios highlight opportunities to produce ethanol with emissions that are 47.0-70.0% lower than
gasoline. Many countries are now developing or revising renewable energy policies. Typically, bio-
fuel substitutes for gasoline are required to reduce GHG emissions by more than 21%. Our results
could help position U.S. corn ethanol to compete in these new and growing markets.

Introduction

Between 2004 and 2014, US ethanol production, virtually
all from cornstarch, increased from 12.87 to 54.13 billion
liters per year. This increase was driven by two pieces of
legislation that mandated the nation’s supply of transpor-
tation fuel, in aggregate, must contain specific amounts
of biofuels. The Energy Policy Act of 2005 established the
Renewable Fuel Standard (RFS), which included a schedule
of required biofuel use that started at 15.14 billion liters
in 2006 and rose to 2839 billion liters by 2012. The
Energy Independence and Security Act of 2007 replaced
the RFS with the Revised Renewable Fuel Standard (RFS2).
The RFS2 included a new schedule of required biofuel use
that began at 34.07 billion liters in 2008 and ramps up to
136.26 billion liters by 2022. Corn ethanol’s mandate
started at 34.07 billion liters in 2008, increased to 56.78
billion liters in 2015, and remains at that level
through 2022.

A key objective of the RFS2 is to reduce greenhouse gas
(GHG) emissions associated with transportation fuels.
Currently, the only cost-effective biofuel substitute for gas-
oline is ethanol. Under the RFS2, ethanol can qualify as a
conventional, advanced, or cellulosic biofuel. Conventional
biofuel is defined as ethanol made from cornstarch. To be
a renewable fuel, corn ethanol produced in refineries that
began construction on or after 19 December 2007 must
have life-cycle GHG emissions at least 20% lower than an

energy-equivalent quantity of average gasoline in 2005.
Corn ethanol produced in refineries in place or under con-
struction on that date is grandfathered in as conventional
biofuel regardless of its GHG profile. Ethanol made from
cellulose, hemi-cellulose, lignin, sugar, starch (not from
corn), and various types of waste biomass that has life-
cycle GHG emissions at least 50% lower than those of gas-
oline qualify as ‘advanced biofuels’. Additionally, ethanol
made from cellulose, hemi-cellulose, or lignin that has a
GHG profile at least 60% lower than that of gasoline quali-
fies as ‘cellulosic biofuel’. Over time, advanced and cellu-
losic biofuels receive increasing shares of the annual
renewable fuel mandate.

Quantifying the GHG profile of corn ethanol has been
contentious since Searchinger et al. [2] concluded that the
emissions associated with its production and combustion
exceeded the emissions associated with producing and
combusting an energy-equivalent quantity of gasoline.
The authors argued that using billions of kilograms of US
corn to produce ethanol reduces supplies of, and
increases prices for, corn and other commodities in
domestic and world food and feed markets. Farmers in
the United States and elsewhere respond by bringing
new land into production. These land-use changes (LUC)
are related to ethanol production because the new land
is used to grow more corn and to replace some of the
decreased production of other commodities that occurs
when US farmers allocate more existing cropland to corn.
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Searchinger et al. [2] argued that including emissions
related to LUC, particularly international LUC (iLUCQ),
results in corn ethanol having a higher GHG profile
than gasoline.

The RFS2 directed the US Environmental Protection
Agency (EPA) to do a full GHG life-cycle analysis (LCA) for
corn ethanol and to include both direct and significant
indirect sources of emissions. EPA designated iLUC, inter-
national livestock, international rice methane, and inter-
national farm inputs as significant indirect sources. The LCA
was released in the 2010 Regulatory Impact Analysis (RIA)
of the RFS2 [1]. It included projections through 2022 of the
GHG emissions associated with 11 source categories that,
collectively, capture the full range of direct and indirect
GHG emissions associated with the production and com-
bustion of corn ethanol. The EPA concluded that in 2022,
the emissions profile of a unit of corn ethanol from a new
natural gas-powered refinery would be 21% lower than the
emissions profile of an energy-equivalent quantity of
‘average’ gasoline in 2005.

Since 2010, the RIA LCA for corn ethanol has dominated
policy discussions and federal regulations related to etha-
nol as a renewable fuel and a GHG mitigation option.
During this time, a large body of new data, scientific stud-
ies, technical reports, and other information has become
available collectively showing that the emissions pathway
corn ethanol has followed since 2010 is much lower than
that projected in the RIA. Our objective is to assess corn
ethanol’s current GHG profile in light of this new informa-
tion. This work is timely as many countries (e.g. Colombia,
Japan, Brazil, Canada and the European Union) are devel-
oping renewable energy policies that require biofuel substi-
tutes for gasoline to reduce GHG emissions by more than
21%. Our results could help position US corn ethanol to
compete in these new and growing markets.

We also develop two projected emissions profiles for
corn ethanol in 2022. A business-as-usual (BAU) scenario
assumes a continuation through 2022 of several trends
that have been reducing corn ethanol's GHG profile over
time (e.g. refineries switching from coal to natural gas as a
process fuel). A high efficiency-high conservation (HEHC)
scenario assumes a proactive approach by refineries to
lower the GHG profile of ethanol. In addition to the BAU
trends, this scenario assumes refineries adopt specific GHG
emissions-reducing technologies and practices. The results
of this scenario could apply to a refinery, a set of refineries,
or the industry as a whole.

Methods

In 2010, the RIA LCA was the most comprehensive assess-
ment of corn ethanol's GHG profile. EPA developed three
scenarios to assess the impacts of the RFS2’'s ethanol man-
date. A ‘reference case’ considered the situation with no
RFS2. Projected volumes in 2022 of corn ethanol, soybean
biodiesel, and cellulosic ethanol (46.56, 0.38, and 0.0 billion
liters, respectively) were taken from the Energy Information
Agency’s (EIA) Annual Energy Outlook for 2007 [3]. A
‘control case’ included the renewable fuel volumes man-
dated by the RFS2 by 2022. For corn ethanol, soybean bio-
diesel, and cellulosic ethanol these are, respectively, 56.78,
2.27, and 48.45 billion liters. A ‘corn ethanol only case’ set

corn ethanol at its reference case volume and soybean die-
sel and cellulosic ethanol at their 2022 RFS2 levels.
Comparing the control and corn ethanol only cases iso-
lated the impacts of the corn ethanol mandate.

The RIA LCA is the starting point for our analysis. For each
of the 11 emissions categories we: (1) review the RIA projec-
tion; (2) describe relevant new information that has become
available since 2010; and (3) quantify a new emissions value
based on the new information.? For some categories, no sub-
stantive new information has appeared since 2010. In these
cases, we apply, as appropriate, new emissions coefficients
and global warming potentials (GWPs) to the RIA values. For
source categories where new information indicates that emis-
sions have not developed as projected in the RIA, we use a
variety of methods to derive new emissions values. In some
cases, our methods differ from those used in the RIA. This is
particularly true for categories where emissions reflect
changes in domestic and international land use.

Most of the new data, emission factors (EFs), and global
warming potentials we use in this analysis have become
available from 2010 to 2015. Most of the studies we draw
on have publication dates between 2013 and 2015. This
means our current GHG profile does not reflect a specific
year but rather a composite year representative of the mid-
2010s. Finally, in developing updated emissions values we
use a variety of metrics. To aggregate emissions across cate-
gories and facilitate comparisons with RIA emissions values,
we convert the total emissions for each category to the RIA
metric, grams of CO, equivalent per million Btu (g
CO,e/MMBtu).?

Results
Domestic farm inputs and fertilizer N,O

This category includes emissions related to the on-farm use
of fertilizers, other chemicals, fossil fuels, and purchased
electricity. We also include here an emissions credit that
accounts for emissions reductions associated with substitut-
ing ethanol co-products for grains in livestock diets.

EPA used the Forestry and Agricultural Sector
Optimization Model (FASOM) to assess the US farm sector
impacts of the RFS2 on production, land use, and input
use. FASOM is a dynamic partial equilibrium economic
model that disaggregates US agriculture into 11 market
regions and 63 sub-regions [4]. The model includes over
2000 crop, livestock, and biofuel production systems. In
FASOM simulations, lands shift between commodities in
response to new policy or market conditions and the
model tracks changes, by commodity, in acres, produc-
tion and input use (including nitrogen, phosphorus, pot-
ash, herbicides, pesticides, diesel, gasoline, natural gas,
and electricity). Life-cycle EFs for fuels and fertilizers are
from Argonne National Laboratory (ANL)'s GREET 2009
model. EFs for fertilizer-related N,O are from Colorado
State University’s DAYCENT model. Comparing simulation
results for the ‘control’ and ‘corn only’ cases, the RIA
emissions value for this category was 10,313g CO,e/
MMBtu [1].

The RIA projected 19.66 million additional tonnes of
corn would be needed by 2015 to produce the 9.84 billion
liters of ethanol required to meet the RFS2’s 56.78 billion
liter cap. Since the overall mandate was 55.98 billion liters
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Table 1. Ethanol production market breakdown and animal feed displacement by ethanol plant type.

Total displaced animal feed (g/L of ethanol)

Co-product credit

Ethanol market

Ethanol plant type share (%) Corn Soybean meal Urea Soy oil g CO,e/L ethanol g CO,e/MMBtu
Dry mill w/o corn oil extraction 17.7 527 207 153 - —262 —12,981
Dry mill w/corn oil extraction 70.9 504 198 14.6 - —250 —-12,417
Wet mill 1.4 857 - 131 117 —-291 —14,449
Weighted average - - - - —257 —12,749

in 2014 and 56.78 billion liters thereafter, we use the RIA
corn projection as the basis for assessing the current emis-
sions for this source category. Dividing 19.66 by the aver-
age US per-hectare corn yield in 2015 of 10.57 tonnes, we
estimate the RFS2 corn ethanol mandate would require US
farms to increase corn area by 1.86 million hectares.” We
allocate these acres regionally based on corn acreage data
in the United States Department of Agriculture’s (USDA)
2010 Agricultural Resource Management Survey (ARMS) [6].

For inputs, we consider changes in farm sector use of
nitrogen (N), phosphorus (P), and potassium (K); composites
for herbicides, insecticides, and fungicides; and diesel fuel.
We get chemical application rates for corn, nationally and by
region, from the 2010 ARMS [6].° For fungicide, ARMS data
identify application rates for the Corn Belt and the nation.
For non-Corn Belt regions, we use the national rate. Based
on University of Tennessee farm budgets for 2015 [7], we set
diesel fuel use at 72.36L/ha under conventional tillage. To
account for hectares on which a given chemical is not
applied, we calculate an effective application rate by multi-
plying the ARMS regional application rate by the percentage
of hectares in each region that apply that chemical [6].° Our
region-weighted national average effective application rates
for nitrogen, phosphorus, potassium, herbicides insecticides,
and fungicides are 155.27, 53.55, 54.34, 2.36, 0.02, and
0.01 kg/ha, respectively. Regional effective application rates
are available in Rosenfeld et al. [5].

From the regional acreage changes and effective applica-
tion rates, we obtain changes in chemical and fuel use by US
agriculture in response to the RFS2 corn ethanol mandate.
Multiplying these changes by EFs from several sources, we
get corresponding emissions estimates. Energy-related emis-
sions also occur in the manufacture and transport of chemi-
cals and fuel inputs. EFs reflecting these ‘upstream’ activities
for nitrogen, phosphorus, potassium, and insecticides are
obtained from the GREET 2015 model [8]. From GREET 2015
we also obtain EFs for diesel fuel covering both upstream
activities and on-site combustion. EFs covering upstream
activities for herbicides and fungicides come from the ecoin-
vent v2 database [9]. For nitrogen fertilizer applications, N,O
is emitted directly to the atmosphere from cultivated soils,
and indirectly at other locations when N is transported off-
site through volatilization, leaching, and runoff. EFs for these
direct and indirect N,O emissions follow IPCC guidance per
kilogram of N fertilizer applied [10].

We assess emissions related to fertilizers, herbicides and
pesticides and fuel at 10,815, 8382, and 2617g CO,e/
MMBtu, respectively. Summing these values, we estimate
the total emissions-related domestic use of farm chemicals
and fuel at 21,814g CO,e/MMBtu. Our approach differs
from the RIA’s, which simultaneously accounts for the sub-
stitution of ethanol co-products for grain in animal feed
markets, resulting in a reduction in additional corn produc-
tion (and therefore hectares) required to meet the RFS2

ethanol mandate. Our use of regional effective application
rates means our emissions estimates apply to
‘representative’ incremental regional acres.” Hence, we still
need to account for the co-product emissions credit.

Animal feed co-products from ethanol production
include distiller grains and solubles (DGS) from dry milling
and corn gluten meal and corn gluten feed (CGM and CGF)
from wet milling. We use the ‘displacement method’ to
assess the co-product credit. In this approach, all energy
and emissions associated with separating solids from the
ethanol stream, drying the solids, and transporting the fin-
ished feeds to the point of final sale are allocated to the
ethanol pathway. The pathway then receives a credit equal
to the emissions that would have occurred if the displaced
feed grain had been produced. GREET 2015 includes values
for displaced animal feed per unit of ethanol by milling
process. Table 1 shows these values and the co-product
emissions credits per liter of ethanol and per MMBtu.

Summing the farm inputs emissions (+21,814g CO,e/
MMBtu) and the weighted average co-product credit
(—12,749g CO,e/MMBtu) gives a total emissions value of
90659 CO,e/MMBtu. This is slightly lower than the RIA
value and largely reflects the lower GWP for N,O from the
Intergovernmental Panel on Climate Change’s (IPCC) Fourth
Assessment Report (AR4). EPA used GWPs from the IPCC's
Second Assessment Report (AR2).

Domestic land-use change

Domestic LUC includes: (1) direct land-related emissions
associated with shifting cropland and land from other uses
into corn production; and (2) indirect emissions related to
bringing new lands into production to replace some of the
decreases in output of non-corn commodities that occur
when farmers allocate more existing cropland to corn. For
the RIA, EPA used FASOM to estimate domestic LUC and
the associated emissions. FASOM tracks carbon stored in
trees, understory, and litter within forests and plantations
of woody energy crops but excludes carbon stored in culti-
vated crops. For agricultural lands, FASOM CO, and N,O
EFs are from the DAYCENT/CENTURY model.

EPA compared FASOM LUC results from the control and
corn only scenarios. For each scenario, the model summed
LUC emissions over the period 2000-2022. To these values
were added cumulative land-related emissions that occur
in the 30years following 2022 (reflecting continuing emis-
sions from agricultural soils, decaying biomass, and wood
products). For total cropland and total corn area the net
changes were 0.581 and 1.477 million hectares, respect-
ively. The difference in annualized emissions between the
two scenarios was —4000g CO2e/MMBtu, which was the
RIA emissions value for this category [1].



4 J. LEWANDROWSKI ET AL.

We estimate domestic LUC emissions using results of a
2013 simulation of the Global Trade Analysis Project-
Biofuels (GTAP-Bio) model and LUC emissions coefficients
available in ANL's Carbon Calculator for Land Use Change
from Biofuels Production (CCLUB) tool [11]. The GTAP-Bio
2013 results, developed in Taheripour and Tyner [12],
include domestic and international land-use changes
related to US corn ethanol production increasing from its
2004 level (GTAP-Bio's base period) to the RFS2 cap of
56.78 billion liters per year. Globally, the GTAP-Bio model
estimates regional area changes for 18 agro-ecological
zones (AEZs), and within each AEZ, changes in four land
types (forests, grassland, cropland-pasture, and young for-
est shrub). Only AEZs 7-16 apply to US agriculture. For the
United States, summing area changes across AEZs shows
increasing US ethanol production resulted in conversions
to cropland of 13,999 hectares of young forest shrub,
64,773 hectares of forest, 92,617 hectares of grassland and
1,788,462 hectares of cropland pasture (conversions by AEZ
and land type are in Rosenfeld et al. [5, table 2-12]).

The CCLUB tool also includes LUC results for a similar
analysis by Taheripour, Tyner, and Wang using a 2011
GTAP model [13]. Comparing the 2011 and 2013 GTAP
results highlights how much new information has
improved our understanding of the links between, and
impacts related to, changes in corn ethanol markets and
LUC relative to 2010. GTAP-Bio expands the set of land
transformation elasticities from a single value to a set of
region-specific values. GTAP-Bio also incorporates an
improved cost structure that reflects the higher cost of
converting forest to cropland versus converting pasture to
cropland. Comparing the LUC results, conversions of young
forest shrub, forest, and grasslands in the 2013 GTAP-Bio
simulation are 79%, 80%, and 86% less, respectively, than
in the 2011 simulation. There is also a 53% increase in con-
versions of cropland pasture to cropland. Overall, the
GTAP-Bio analysis shows the large increase in US corn etha-
nol production since 2004 resulted in a large increase in
land in corn production, a relatively small increase in
aggregate agricultural land, and increases in cropland com-
ing predominantly (over 90%) from cropland pasture.

We pair the GTAP-Bio AEZ-land type area changes with
LUC emissions coefficients from the Century/COLE model.
Relative to the RIA, which uses 2010 Century coefficients
for agricultural land emissions, the coefficients used in our
analysis better reflect irrigation effects and N,O emissions
from cropland and pasture.

The CCLUB tool also includes LUC emissions coefficients
from Woods Hole (WH), and Winrock International (WI). We
chose the Century/COLE coefficients because they align
with the GTAP-Bio’s AEZ-land-use type structure. The WH
and WI coefficients apply to regions and have fewer land
types. The WH coefficient set includes forest and grass-
lands; the WI set includes forest, grassland, and cropland-
pasture. Hence, using the WH or WI coefficients with the
AEZ-land type requires some aggregation across AEZs and
land types. Additionally, distinct Century/COLE EFs are
available for conventional and reduced tillage systems and
soil depths of 30 and 100cm. We assume the 100cm soil-
depth coefficients present a more complete picture of soil
carbon changes than the 30cm coefficients. We also note
the conventional tillage scenarios are slightly less in

absolute value (i.e. more conservative) than the reduced
tillage coefficients. Based on these considerations, we use
Century/COLE 100cm conventional tillage coefficients to
estimate the GHG emissions related to agricultural lands.
The Century/COLE EFs by AEZ and land type for conven-
tional and reduced tillage systems and soil depths of 30 cm
and 100 cm are in Rosenfeld et al. [5, tables 2-14 and 2-15].

We aggregate emissions across all AEZ-land type combi-
nations and then annualize the total using the CCLUB
default value of 30years. We divide these emissions by
43.87 (i.e. the increase in annual ethanol production, in bil-
lion liters, from 2004 to the RFS2 cap of 56.78 billion liters)
to get emissions per billion liters of increased annual etha-
nol production. We convert these emissions to the com-
mon metric g CO,e/MMBtu using a heating value of
20,166 Btu/L.

As shown in Table 2, our emissions value for the domestic
LUC category is —2038g CO,e/MMBtu. The negative value
indicates net sequestration associated with all ethanol-related
LUC. This sequestration is due to: (1) over 90% of all new
lands shifting into cropland coming from the cropland pas-
ture category; and (2) the Century/COLE emissions coefficients
for such conversions being negative across all AEZs. The net
sequestration associated with conversion of cropland pasture
to cropland reflects root growth deeper in the soil profile
that more than offsets CO, emissions due to oxidation of car-
bon near the surface. Net emissions associated with conver-
sions of forest, grassland, and young forest shrub are all
positive. For completeness, Table 2 also shows domestic LUC
emissions for our land use changes using the WH and WI EFs
and the Century/COLE emissions factor for reduced tillage
and 30 cm soil depth.

Finally, several recent studies examine changes in US
agricultural land use between 2006 and 2012 using USDA’s
Cropland Data Layer (CDL) series. These studies conclude
that over this period, increases in US corn ethanol produc-
tion helped shift millions of acres from grassland uses (and
some forest and wetland uses) to cropland, and produced
a large increase in cropland acres planted to corn and
corn/soybean systems. Wright and Wimberly [14], Lark
et al. [15], and Wright et al. [16] extend the grassland con-
version results to significant losses of native prairie and
other long-term  grasslands, and to  previously
unaccounted-for GHG emissions attributable to corn etha-
nol. Lark et al. [15] put the GHG emissions from recently
converted lands used to grow corn or soybeans at 94-186
MMTCO.e. For reasons developed below, we do not incorp-
orate the results of these studies in our analysis.

The CDL is a land cover data product developed annually
by USDA’s National Agricultural Statistics Service (NASS) to
provide detailed maps of commodity production over the
growing season. NASS starts with a series of satellite images
covering the contiguous 48 states. Each image consists of pix-
els with a resolution of 30 square meters. Each pixel is photo-
graphed multiple times between April and October, which
gives a dynamic visualization of the pixel. A small set of crop-
land pixels are ground truthed to match with specific crops.
Using this information, a software package assigns non-
sampled cropland pixels to specific crops.

Extending conversions of grassland to cropland using
CDLs to decreases in native prairie, or other long-term
grassland, is not straightforward. CDLs do not distinguish
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Table 2. Domestic land-use change emissions for GTAP 2013 simulation using emission factors from Century/COLE, Woods Hole, and Winrock International.

Total direct emissions

Annualized emissions Direct emissions Direct emissions

(Mg CO.e) (Mg COe/year) (g COe/L) (g CO,e/MMBtu)
Century/COLE - 30 cm — Reduced till —52,191,279 —1,739,709 —39.65 —1965
Century/COLE — 100 cm - Reduced till —62,656,429 —2,088,548 —47.60 —2359
Century/COLE - 30 cm - Conventional till —45,625,214 —1,520,840.5 —34.66 —1718
Century/COLE - 100 cm - Conventional till —54,120,694 —1,804,023.1 —41.13 —2038
Woods Hole 48,163,909 1,605,464 36.59 1813
Winrock International 280,879,558 9,362,652 2134 10,577
Table 3. Methane emission factors from irrigated rice by region (in kg CO,e/ha).
Study Corn belt Pacific Southwest South central Southeast Southwest United States
EPA RIA® 4512 4406 5557 N/A 10,811 N/A
Present® 5928 5310 7500 9222 11,421 7324
Sources: ? [1, Table 2.4-9]; ® [21]; N/A = not applicable; kg CO,e/ha = kilograms of carbon dioxide equivalent per hectare.
Table 4. Changes in population, emission factors, and total emissions by livestock type.

Enteric emissions Manure management emissions
Livestock Change in population per head Total emissions per head Total emissions Total
type (in 1000 head) (g COye/head) (g CO,e/MMBtu) (g COe/head) (g CO,e/MMBtu) g CO,e/MMBtu
Dairy -20° 3625 —351 2065 —200 —551
Beef 90 1850 807 143 62 869
Poultry 712,564.6b - 3.21 —195 —195
Swine —220 375 —40 378 —403 —443
Total NA NA 416 NA —736 —320

“Mature cows only.

PPopulation changes the same as in [1] except for poultry, which has been reduced to reflect annual average population changes rather than changes in

total head slaughtered.

g CO,e/head = grams of carbon dioxide equivalent per head; g CO,e/MMBtu = grams of carbon dioxide equivalent per million British thermal units.

native from managed grasslands. In CDL studies, the
‘grasslands’ category includes native grasslands, pasture,
cropland pasture, grass-hay, and land in the USDA’s
Conservation Reserve Program. Quantifying emissions adds
another complexity because the emissions associated with
any given pixel moving from grassland to cropland will
depend on the prior grassland use and management prac-
tices. Satellite images do not show either. There is also the
issue of allocating emissions among drivers. Farmers base
land-use and production decisions on past and expected
commodity prices. Since 2006, domestic and world corn
and soybeans prices have been historically high. In addition
to increased ethanol production, these high prices reflect
global population growth, increases in global demands for
livestock products, and a series of severe weather events
that disrupted global and US commodity markets.
Analyzing the high US corn prices between 2006 and 2009
relative to 2004, Babcock and Fabiosa [17] conclude that
32% of the higher annual prices were attributable to etha-
nol and 64% to other factors.

Finally, the CDL is one of several national-scale land-
cover data products developed by US government agen-
cies. Others include the Forest Service’s Forest Inventory
Assessment, the USDA’s Natural Resources Inventory, and
the US Geological Survey’s National Land Cover Database.
Focusing on 20 counties in the Prairie Pothole Region
between 2004 and 2014, Dunn et al. [18] show that esti-
mates of conversions of grassland, forest, and wetlands to
cropland vary significantly depending on the land cover
product and analytical techniques used.

Domestic rice methane

US rice production is a source of CH; emissions due to
organic material decomposing under anaerobic conditions

in flooded fields. In the RIA, a decrease in rice hectares
accounts, in part, for the RFS2-driven increase in corn hec-
tares. This results in a decrease in CH,; emissions.

EPA used FASOM simulations for the control and corn
only scenarios to project RFS2 corn ethanol mandate-driven
changes in rice hectares in 2022 at —23,790. These hectares
were allocated across domestic rice-producing regions and
each region’s hectares were multiplied by a region-specific
per-hectare emissions coefficient from EPA [19]. EPA esti-
mated the RFS2-related change in CH,; emissions from
decreased rice production at —42,000 metric tons CO,e,
which converted to —209g CO,e/MMBtu [1].

Domestic rice is a small emissions category and little new
information has emerged since 2010 indicating US rice area
has responded to the RFS2 along a significantly different
path than that projected in the RIA. Hence, we use the RIA
change in total domestic rice hectares, but allocate them
regionally based on their current distribution. As shown in
Table 3, since 2010, EPA has increased the per-hectare CH,
EFs for rice production and the IPCC has increased the GWP
value for CH, from 21 to 25. We incorporate both adjust-
ments in calculating changes in regional rice emissions.
Summing emissions across regions and dividing by 9.84 bil-
lion liters yields a per-liter emissions value. Applying a heat-
ing value for ethanol of 20,166 Btu/L, our emissions value for
Domestic rice methane is —1013 g CO,e/MMBtu.

Domestic livestock

This category includes changes in CH; emissions from
enteric fermentation and changes in CH; and N,O emis-
sions from manure management. These sources account
for about 47% of GHG emissions from US agriculture [20].
Enteric fermentation from dairy cows and beef cattle and
manure management on dairy, beef, and swine operations
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Table 5. Reduced Methane Emissions from Distillers Grains as Animal Feed by Ethanol Plant Type.

Ethanol Dried DGS yield Wet DGS Emissions Emissions reduced
Ethanol plant type market share (%) (g/L) yield (g/L) reduced (g CO,e/L) (g CO,e/MMBtu)
Dry mill with out corn oil extraction 17.7 504.1 661.7 —50.46 —2506
Dry mill with corn oil extraction 709 482.2 632.9 —48.34 —2397
Wet mill 11.4 - - - -
Per average liter - 431.1 565.9 —43.21 —2143

g/L: grams per liter; g CO,e/L: grams carbon dioxide equivalent per liter; g CO,e/MMBtu: grams carbon dioxide equivalent per million British thermal units.

account for about 95% of US livestock emissions. Increases
in US corn ethanol production affect changes in livestock
emissions through changes in animal populations, feed pri-
ces, and feed mixes. Corn is the most important feed input
used in confined dairy, beef, swine, and poultry operations.
While increases in corn ethanol production have helped
drive historically high corn and feed prices since 2005, feed
price impacts have been moderated by increased produc-
tion of feed co-products, mainly DGS. When substituted for
corn in cattle feed, DGS (dried or wet) reduces CH, emis-
sions from enteric fermentation [1].

In the RIA, the RFS2-driven impacts of higher corn etha-
nol production on feed prices, livestock numbers, and live-
stock-related emissions are assessed using FASOM
simulations for the ‘control case’ and the ‘corn only case’.
FASOM projected the RFS2 would increase feed prices;
reduce the populations of dairy cattle, swine, and poultry;
increase the population of beef cattle; and reduce live-
stock-related emissions of CH, and N,O. FASOM assesses
livestock-related emissions on a per-head basis. Hence, a
change in animal numbers results in a change in emissions
in the same direction. An adjustment is made to capture
the lower per-head enteric fermentation emissions for cat-
tle fed DGS in place of corn. For this source category, the
RIA projected emissions in 2022 at —3746 g CO,e/MMBtu.

Since 2010, little new information has appeared to indicate
that the relationship between feed prices and domestic live-
stock populations has changed significantly from those in the
RIA’s FASOM simulations. Given this, the relatively small magni-
tude of the emissions category, and annual corn ethanol pro-
duction in the RIA being 56.78 billion liters from 2015 through
2022, we use the RIA’s 2022 projections for changes in dairy
cow, beef cattle, and swine populations in our analysis. For
poultry, we reduced the RIA population change by 75%,
because the RIA appears to include changes in poultry slaugh-
tered instead of the annual average poultry population. The
time from hatch to slaughter for poultry species is generally 3
to 4 months. Hence, it takes 3-4 slaughtered birds to apply a
per-head annual emissions factor. We combined the changes in
animal populations with annual EFs from the official 2016 US
greenhouse gas inventory [21]. These EFs incorporate changes
EPA has made in methodologies for computing emissions for
different types of livestock and the AR4 GWPs for CH, and N,O.
Table 4 shows changes in populations, per-head annual EFs,
and total emissions by livestock type.

To capture CH4 emission reductions associated with feeding
cattle DGS in place of corn, we use emissions reduction factors
from the GREET 2015 (i.e. 0.183 kg CO,e/dry kg of dried DGS
(DDGS) and 0.130 kg CO,e/dry kg of wet DGS (WDGS) for every
dry kilogram of DGS consumed by beef cattle). Based on
Renewable Fuels Association data [22], beef cattle consume
45% of DGS. Table 5 shows, by plant type, wet and dry DGS
yields per liter of ethanol and emission reductions per liter and

in g CO,e/MMBtu). Table 5 also shows the ethanol market
shares by type of plant, which we use to calculate the emissions
reduction for an ‘average’ liter of ethanol.

Combining the reduced emissions from changes in ani-
mal populations (—320g CO,e/MMBtu) with the reduced
emissions from using more DGS in livestock diets (—2143 g
CO,e/MMBtu) we assess domestic livestock emissions at
—2463g CO,e/MMBtu. This is about two thirds the RIA
value, and it reflects differences in the CH,; emissions
reduction factors associated with feeding beef cattle DGS
in place of corn in the GREET 2009 and 2015 models.

International livestock

As in domestic feed markets, large increases in the US etha-
nol industry’s demand for corn have helped drive higher pri-
ces in international feed markets. This has affected changes
in global livestock populations, which in turn has affected
changes in CH4 emissions from enteric fermentation and CH,
and N,O emissions from manure management.

The RIA grouped international livestock into seven
regions (Canada, Western Europe, Eastern Europe, Oceania,
Latin America, Africa, the Middle East, and India).
Simulations of the Food and Agriculture Policy and
Research (FAPRI) - Center for Agricultural and Rural
Development (CARD) model for the ‘control case’ and the
‘corn only case’ were used to evaluate changes in regional
populations of dairy and beef cattle, swine, sheep, and
poultry in response to RFS2-driven changes in international
feed prices. The changes in regional livestock populations
were multiplied by region- and livestock-specific, per-head
GHG EFs. The EFs for both the enteric fermentation and
the manure management emissions reflected the default
IPCC EFs, which account for differences in regional livestock
systems [10]. EPA projected emissions for this category in
2022 at 3458 g CO,e/MMBtu.

Since 2010, little new information has appeared to indi-
cate that the FAPRI-CARD relationships between feed prices
and international livestock production have changed sig-
nificantly. Given this, the relatively small magnitude of the
emissions category, and annual corn ethanol production in
the RIA being 56.78 billion liters from 2015 through 2022,
we use the RIA’s 2022 projections for changes in regional
dairy cattle, beef cattle, swine, sheep, and poultry popula-
tions for our analysis. Population changes by region and
livestock group are available in Rosenfeld et al. [5].

With one exception, we use the RIA’s region- and live-
stock-specific EFs for enteric fermentation and manure
management; however, we adjust these factors to reflect
the AR4 GWPs for CH,; and N,O. While updated activity EFs
are available for a number of countries, it is difficult to jus-
tify applying these factors to changes in livestock popula-
tions in regions that are multi-county aggregates. The
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Table 6. iLUC emissions by scenario, emissions factor set, and annualized emissions value.’

Emission Emissions
Scenario factor (EF) data set (g CO,e/MMBtu)*
RIA [1] analysis
FAPRI-CARD Winrock 31,790
Scenarios making up composite iLUC emissions value used in this analysis
GTAP 2013 CARB AEZ Model 17,802
GTAP 2013° Winrock 5913
GTAP 2013 adjusted with data in [26] CARB AEZ Model 8464
GTAP 2013 adjusted with data in [26] Winrock 1326
CARB 2015 [27] CARB AEZ Model 20,890
Dunn et al. 2015 [11] Winrock 5286
[11] Woods Hole 3893

Scenarios in [11] and the four scenarios we construct use land conversion results published by [26]. [27] modified some important factors and values
within the GTAP-Bio model to produce their own unique land conversion results.

PEmissions vary in these studies because within each region, [11] used an average of the individual country EFs, while we weight countries’ EFs by their
share of regional arable land.

All studies assume emissions from land conversions occur over 30 years. This column shows annualized values. The RIA and GTAP-Bio 2013 consider differ-
ent volume increases in corn ethanol production. Describing emissions in g CO,e/MMBtu puts all emissions in a comparable metric.

Abbreviations: iLUC = international Land Use Change; g CO,e/MMBtu = grams carbon dioxide eqivalent per million British thermal units; RIA = Regulatory
Impact Analysis; FAPRI- CARD = Food and Agricultue Policy Research Institute-Center for Agricultural and Rural Research model; GTAP = Global Trade
Analysis model; CARB = California Air Resources Board; AEZ = Agricultural-Ecological Zone.

Table 7. Mode and distance assumptions.

Plant to Terminal to
Farm to stacks Stacks to plant blending terminal retail station DGS? Corn oil
% of total Distance % of total Distance % of total Distance % of total Distance % of total Distance % of total  Distance
Mode shipped (km) shipped (km) shipped (km) shipped (km) shipped (km) shipped (km)
Barge 0 0.0 0 0.0 13 837 0 0.0 2 837 0 0
Rail 0 0.0 0 0.0 79 1287 0 0.0 12 1287 20 644
Truck 100 16.1 100 64.4 8 129 100 48.3 86 80 80 161

*The values shown in these columns reflect a weighted average dry and wet distiller grains and solubles (DGS) co-product.

exception was Canadian cattle, where updated factors were
available and the region consisted of only Canada.

Given these adjusted EFs, our emissions value for the
international livestock source category is 3894g CO,e/
MMBtu. This value is somewhat higher than the RIA value
and reflects the updated EFs for Canadian cattle and the
higher GWP for CH,.

International land-use change

iLUC is the largest emissions category in the RIA LCA. It
encompasses indirect emissions associated with farmers
outside the United States shifting new land into commod-
ity production in response to increases in global commod-
ity prices driven by the RFS2 corn ethanol mandate. For
the RIA, EPA used simulations of the FAPRI-CARD model to
assess global agriculture’s response to the RFS2. FAPRI-
CARD can assess changes in area and production across 20
crops and 54 regions in response to changes in inter-
national and domestic commodity prices. For 2022, FAPRI
projected the RFS2 corn ethanol mandate would increase
cropland outside the United States by 789,000 hectares
and decrease pasture by 446,000 hectares. Among regions,
Brazil accounted for the largest share of new cropland
(approximately 316,000 hectares) [1, see fig. 2.4-47].

While FAPRI can assess how much new land will shift into
commodity production in response to a global commodity
market shock, it cannot distinguish the types of land that
shift. The FAPRI-CARD projected changes in regional land
areas used for commodity production (crops and livestock)
were analyzed by WI to determine the types of land, and the
quantities of each land type, that would be affected. WI's
methodology drew on MODIS (Moderate Resolution Imaging
Spectroradiometer) satellite data covering the period 2001

to 2007 [23,24] and expert opinion to quantify, by region,
conversions and reversions of land to commodity production
from forest land, from grassland, and from cropland-pasture.
Summed across regions, the RIA projected emissions in 2022
for the iLUC source category at 31,790 g CO,e/MMBtu.

Since 2010, several new studies have assessed the iLUC
impacts associated with the corn ethanol mandates in the
RFS and RFS2 [11,12,25-28]. These studies employ data,
modeling capabilities, and other information that were not
available for the RIA. Viewed collectively, three results stand
out. First, the studies all find significantly lower iLUC emis-
sions than were projected in the RIA. Second, across studies,
estimates of corn ethanol-driven iLUC emissions trend down
over time. Finally, two research groups, the California Air
Resources Board (CARB) [27, 29] and Dunn et al. [11, 25], look
at the issue twice. Each finds iLUC-related emissions to be
significantly lower (by 33-60%) in their second analysis.
Given that the RIA projected emissions path for iLUC is flat
from 2015 onward, the new research strongly indicates that
actual iLUC emissions related to corn ethanol are much
lower than was projected in the RIA.

Except for Babcock and Igbal [26], the studies cited
above employ some version of the Global Trade Analysis
Project (GTAP) model. Most use the 2013 GTAP-Bio (for bio-
fuels) model described in Tahierpour and Tyner [12].
Relative to the FAPRI-CARD model used in the RIA and the
GTAP model used in CARB [29], the 2013 GTAP-Bio model
has several upgrades that make it better suited to analyz-
ing the iLUC impacts related to increases in US corn etha-
nol production. First, its base period is 2004. Hence, all
simulations are relative to the year before implementation
of the RFS. Second, the model includes region-specific land
transformation elasticities developed from two United
Nations Food and Agriculture Organization (FAO) land-
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Table 8. Assumptions and inputs for fuel production modeling in GREET 2015.

Dry milling plant Dry milling plant Wet milling
Input category without corn oil extraction® with corn oil extraction® plantb
Total energy use for ethanol production (MJ/L) 28.33 27.88 50.02
Process fuel energy — natural gas, coal, and biomass (MJ/L) 25.66 25.18 50.02
Electricity use (kWh/L) 0.195 0.198 0.00
Co-product yield — dry DGS to animal feed (g/L ethanol) 504 482 0.00
Co-product yield — wet DGS to animal feed (g/L ethanol) 661 633 0.00
Co-product yield - CGM to animal feed (g/L ethanol) 0.00 0.00 162
Co-product yield — CGF to animal feed (g/L ethanolc 0.00 0.00 702
Co-product yield: Corn oil (actual g/L ethanol) 0.00 22.77 117
Ethanol yield (L/bushel) 10.6 10.7 9.88
GHG emissions (g CO,./MMBtu) 32,114 31,590 53,055

“These are composite refineries reflecting the 2014 mix of natural gas, coal, and biomass as a process fuel at the respective dry mill refineries.

PElectricity consumption is included with process fuel energy.

Abbreviations: GREET = The Greenhouse Gas, Regulated Emissions, and Energy Use in Transportation Model; MJ/L =Mega Joules per liter;
kWh/L = kilowatt hours per liter; g/L = grams per liter; L/bushel = liters per bushel; g CO,e/MMBtu = grams CO2 equivalent per million Britsh thermal unit;

RIA = Regulatory Impact Analysis; BAU = Business as Usual Scenario; HEHC =

cover datasets. Finally, the model explicitly accounts for
the higher cost of converting forest to cropland relative to
the cost of converting grassland. The complete set of glo-
bal land-use changes generated by Taheripour and Tyner
[12] is available in ANLs CCLUB model.

While commodity production data show that farmers in
the US and in other regions did increase commodity produc-
tion in response to historically high commodity prices over
the period 2004-2012, Babcock and Igbal [26] show most of
these increases were achieved by farmers using existing
cropland more intensely rather than by bringing new land
into production. For example, comparing Brazilian data for
2004-2012 on planted, harvested, and double-cropped hec-
tares, they found increased use of double cropping
accounted for 76% of the increase in harvested area. For
China and India over the same period, they found virtually all
of the increases in harvested area were due to intensification.
In China, the driver was increased use of double cropping,
while in India the drivers were increased use of double crop-
ping (33%) and decreases in idle cropland (67%). This is
important from an LCA perspective because bringing new
land into production generally entails much higher GHG
emissions than does using existing cropland more intensely.

To see how increased intensification might affect the
iLUC impacts in the GTAP 2013 land-use change results, we
apply the Babcock and Igbal [26] intensification measures
for five regions (i.e. Brazil, China, India, Indonesia, and sub-
Sahara Africa) to their cropland increases in the 2013 GTAP
results. Regional conversions to cropland from forest, grass-
land, and cropland pasture in the 2013 GTAP-Bio simula-
tion are shown in Rosenfeld et al. [5, table 2-37] both with
and without the regional intensification adjustments.
Aggregated across regions, intensification reduces hectares
converted by 775,000, which is almost 60% of total hec-
tares converted in the 2013 GTAP results.

To assess iLUC emissions associated with increases in US
corn ethanol production requires linking regional shifts of
land into commodity production with a set of associated
EFs. The RIA employs a set of iLUC EFs developed by WI.
The WI EFs reflect historical land-use trends identified using
MODIS satellite imagery from 2001 and 2007, and include
region-specific factors by type of land converted. A second
set of EFs are those developed by WH. The WH EFs incorp-
orate region- and biome-specific values for belowground
carbon, biomass carbon, and carbon growth factors. The WiI
and WH EF sets are options in the ANL CCLUB model, but
neither aligns exactly with the GTAP 2013 AEZ structure.

High Efficiency - High Conservation Scenario

Hence, using GTAP 2013 iLUC results with either the WI or
WH EF set requires some aggregation of land conversions
across land types and AEZs within each region.

A third set of iLUC EFs is available from the Low Carbon
Fuel Standard Agro-ecological zones (AEZ) model (a GTAP
model tailored to California) used by CARB [27]. The CARB
AEZ EFs are not included in the ANL CCLUB model but are
completely consistent with the 2013 GTAP region-AEZs
structure. This makes computing iLUC-related emissions for
GTAP 2013 simulation results relatively straightforward.

To assess the contribution of iLUC emissions to corn etha-
nol’'s GHG profile, we compute the average iLUC emissions for
seven scenarios. Three scenarios are directly from CARB [27]
and Dunn et al. [11]. Four scenarios we construct using the
regional iLUC impacts from Tahierpour and Tyner [12], the
CARB and WI EFs, and the regional data on intensification in
Babcock and Igbal [26]. Table 6 details the seven scenarios,
their EF sets, and their iLUC emissions values. The average
annual iLUC emissions of these seven scenarios is 9082 g CO,e/
MMBtu. This is our emissions value for the iLUC category.

International farm inputs and fertilizer N,O

This category includes emissions related to changes in the
use of chemical and energy inputs by farmers outside of
the United States responding to changes in global com-
modity markets driven by increases in US corn ethanol pro-
duction. EPA utilized FAPRI-CARD simulations to assess
changes in harvested area and production by crop and
country. Fertilizer application rates per hectare came from
the International Fertilizer Industry Association (IFA) [30]
and FAO [31]. Herbicide and pesticide activity data came
from FAO [31] and, for China, USDA’s Economic Research
Service (ERS) [32]. EFs for fertilizers, herbicides and pesti-
cides came from GREET 2009 [33]. Direct and indirect N,O
emissions from synthetic fertilizer were estimated using an
approach analogous to that used for domestic direct and
indirect N,O emissions.

For energy inputs, EPA used International Energy Agency
(IEA) data on farm-sector use of diesel, gasoline, and electricity
by country [34]. Emissions associated with use of these inputs
were calculated using IEA country-level GHG EFs. Farm-sector
emissions were scaled up to life-cycle emissions based on the
ratio of combustion to life-cycle GHG emissions from US elec-
tricity and fuel use [34]. For each country, dividing the total
life-cycle emissions by the area of arable land in the FAOStat
land area database [31] yielded per-hectare LCA emissions.



Multiplying the per hectare emissions by the FAPRI-CARD
country-level changes in harvested hectares yielded total fuel-
related emissions related to the RFS2 corn ethanol mandate.
Summed across countries and inputs, the RIA projected emis-
sions in 2022 for this category at 6601g CO,e/MMBtu. This
projection, however, reflects the FAPRI-CARD extensive margin
response of international agriculture to the RFS2-driven
increase in US corn ethanol production. As discussed, informa-
tion not available in 2010 indicates international agriculture’s
primary response to increases in US corn ethanol production
has been to use existing cropland more intensely. Since the
RIA overestimates the amount of new land shifted into com-
modity production, it overestimates the emissions associated
with the use of chemical and energy inputs.

We assess emissions for the international farm inputs
and fertilizer N,O category based on the international acre-
age responses to increased US corn ethanol production in
the GTAP 2013 results available in ANL's CCLUB model [11].
Since the base year for the GTAP 2013 model is 2004, its
iLUC results reflect the new land brought into commodity
production outside the United States in response to the
ethanol mandates in the original RFS and the RFS2. That is,
the GTAP 2013 iLUC results reflect an increase of 43.87 bil-
lion liters of US corn ethanol. To make the 2013 GTAP iLUC
numbers more directly comparable to the FAPRI-CARD val-
ues in the RIA, we convert both to new hectares brought
into commodity production per million liters increase in US
corn ethanol. The GTAP 2013 and FAPRI-CARD values are
29.59 and 80.05 ha/million liters, respectively.

We follow the general RIA approach to estimate average
per-hectare emissions associated with international agricul-
ture’s use of chemical and energy inputs. Country-level
per-hectare application rates are from FAO and IEA data
compiled in FAOStat [31]. We update the herbicide and
pesticide use data to reflect the most current data available
from FAQ's FAOStat dataset for pesticide consumption [31].
For multi-country GTAP regions, we compute weighted
average application rates with the weights being each
country’s share of its region’s stock of arable land. Arable
land area came from FAO [31]. Life-cycle EFs for nitrogen,
phosphate, potassium, calcium carbonate, and insecticide
are from GREET 2015. Life-cycle EFs for herbicides and
insecticides are from ecoinvent v2 found in SimaPro [9].

We calculate direct and indirect N,O emissions based on
IPCC guidance [10]. The guidance uses applied nitrogen
fertilizer rates to assess the direct impacts including the N
additions from fertilizer, and the N mineralized from soil
due to the loss of soil carbon. The N fertilizer application
rate is also used to calculate the indirect emissions from
volatilization and leaching [10].

Emissions associated with the use of energy inputs are
calculated using IEA data on total CO, emissions from agri-
cultural fuel combustion by country. These emissions are
combined with country-level emissions related to agricul-
ture’s use of electricity. The total emissions are then scaled
to represent the full life-cycle GHG emissions for each
country. We did not update the RIA EFs for energy inputs
because IEA no longer releases country-specific EFs.

The per-hectare emission rates developed for chemical
and energy inputs are multiplied by the amount of new land
in each GTAP region shifting into commodity production in
response to increased US corn ethanol production. Converted
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to the common energy metric, we assess emissions for this
category at 2217 g CO,e/MMBtu. This value is about a third of
the RIA value and reflects the much lower LUC response per
million liter increase in US corn ethanol production in GTAP
2013 relative to the 2010 FAPRI-CARD model.

International rice methane

This category captures CH; emissions related to RFS2-
driven changes in rice area outside of the United States.
EPA projected these emissions based on IPCC guidance
[10], country-level data on rice area harvested and length
of growing season, and default IPCC EFs for irrigated,
rainfed lowland, upland, and deepwater rice production
systems [10]. Country values for the rice-growing season
came from the International Rice Research Institute (IRRI)
[35]. FAPRI-CARD simulations projected annual country-
level values for rice production and harvested acres under
the ‘control case’ and the ‘corn only case’ scenarios.
Comparing these simulations, the RIA projected inter-
national rice area in 2022 would increase by 58,344 hec-
tares in response to the RFS2 corn ethanol mandate.

Multiplying the country-specific changes in rice acres by
the appropriate production system EF(s) and summing
across countries, the total projected change in CH; emis-
sions in 2022 was 19,918 Mg CH,. This converted to 2089 g
CO,e/MMBtu [1]. Country values for changes in rice area
and emissions are in Rosenfeld et al. [5, table 2-48].

International rice methane is a relatively small emissions
category in the RIA and very little new information indi-
cates a need to change the RIA methodology or emissions
estimate. Hence, we use the RIA’s country-specific changes
in rice acres and CH, emissions (i.e. 19,918 Mg CH,). We
multiply these emissions by the AR4 CH, GWP to get the
CO, equivalent. We then divide the CO, equivalent by 9.84
billion (i.e. the RFS2-related increase in US corn ethanol
production in 2022) to get an equivalent emissions per
liter. We convert this to g CO,e/MMBtu using the heating
value 20,166 (Btu/L). Our value for the international rice
methane emissions is 2483 g CO,e/MMBtu.

Fuel and feedstock transport

CO, emissions from combusting gasoline and diesel fuels
occur in transporting corn from farm to refinery, ethanol
from refinery to retail station, and co-products from
refinery to end users. While this category accounts for
5-6% of ethanol’'s GHG profile, transportation vehicles and
systems have become more fuel and GHG efficient since
2010 [36].

The RIA drew on a combination of sources to determine
fuel and feedstock transportation emissions. From GREET
2009, corn was assumed to move 10 miles by truck from
the farm to a central collection point (i.e. the stack) and 40
miles by truck to the refinery. An Oak Ridge National
Laboratory (ORNL) study provided projected 2022 fuel
transportation modes and distances for ethanol from
refinery to the blending terminal [37]. For co-products, the
EPA obtained data from the USDA on modes and distances
for transporting DGS from refineries to final users [1]. For
each mode of transportation and associated distance trav-
eled, GREET default assumptions and EFs were used. The
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RIA projected 2022 emissions for the fuel and feedstock
transport category at 4265g CO,e/MMBtu. The RIA did not
consider transportation requirements for corn oil.

Our method is similar to that of the RIA but incorpo-
rates updated assumptions, transportation mode and dis-
tance traveled data, and EFs from GREET 2015. Relative to
GREET 2009, GREET 2015 includes: (1) new LCA EFs for five
types of diesel and gasoline freight vehicles; (2) new trans-
portation mode and distance traveled data for ethanol
moving from refinery to blending terminal and from blend-
ing terminal to retail station; and (3) new life-cycle freight
EFs for rail, barge, and truck [36]. For corn oil, transporta-
tion emissions reflect the same emissions per ton-mile as
for DGS. Table 7 shows the modes and distances for trans-
porting corn, ethanol, DGSs, and corn oil used in our ana-
lysis. For the columns labeled Farm to stacks, Stacks to
plant, and DGS, the values are the same as in the RIA. We
assess emissions for this category at 3,432 g CO,e/MMBtu.
Of this, 57.3%, 33.8%, 8.3% are for the transportation of,
respectively, corn, ethanol, and DGS.

Fuel production

This category includes emissions related to energy use at
refineries. Across refineries, energy use per unit of ethanol
varies significantly. Major determinants are the type of
refining process (i.e. wet or dry milling), the process fuel
used (i.e. natural gas, coal, or biomass), the set of co-prod-
ucts produced (wet DGS, and dry DGS), and the quantity of
electricity purchased from the grid. For the RIA, EPA devel-
oped a table from various sources detailing projected 2022
energy use by refineries across these factors [1, table 2.4-
55].8 Based on these energy use values, various EFs from
the GREET 2009 model, and assumed yields of ethanol per
kilogram of corn (0.40L for dry mill plants and 0.37L for
wet mill plants), EPA projected 2022 emissions profiles for
a variety of refinery configurations [1, fig. 2.6-3]. The GREET
model coefficients included: (1) emissions from combustion
of natural gas and coal; (2) upstream emissions for natural
gas, coal, and biomass; and (3) emissions associated with
the production and use of purchased electricity [1, 33].

For the RIA LCA, EPA constructed a ‘representative’ new
dry mill refinery in 2022 that uses natural gas for a process
fuel, produces a DGS mix that is 63% dry and 37% wet,
and has a fractionation technology in place for extracting
corn oil from the DGS. EPA projected emissions for the fuel
production category at 28,000 g CO,e/MMBtu in 2022.

Since 2010, production efficiencies have improved and
GHG intensities have fallen in the US corn ethanol industry.
There has been an ongoing shift from coal to natural gas
as a process fuel. The use of new enzymes and yeast
strains has increased efficiencies in starch conversion and
fermentation so refineries are getting more ethanol per
bushel of corn [38]. Finally, many refineries now recover
corn oil as a co-product. We draw on the set of corn etha-
nol production pathways and their associated EFs available
in GREET 2015. Many of these pathways are new or
updated relative to GREET 2009 and better reflect the pro-
duction technologies and energy use at refineries today.
The updated pathways include: (1) an ethanol industry
average - 92% natural gas, 8% coal; (2) dry mill - 100%
natural gas; (3) dry mill — 100% coal; (4) dry mill - 100%

biomass (forest residue); and (5) wet mill = 72.5% natural
gas, 27.5% coal. Table 8 shows the assumptions on energy
use, co-product yields, ethanol yields, and GHG emissions
for these pathways.

For co-products, drying DGS and extracting corn oil
requires energy. When accounting for DGS as a co-product,
we used the displacement method (described previously).
The energy and emissions related to DGS drying are allo-
cated to the fuel production category and a credit is given
for DGS displacing corn grown for animal feed. As noted,
we allocate the entire co-product credit to the domestic
farm inputs and fertilizer N,O category. For corn oil, we
used the marginal method, which does not allocate the
energy or the emissions related to corn oil extraction to
the ethanol production process and does not award the
process a credit based on reducing the GHG intensity of
downstream products or replacing other feedstocks.

To assess fuel production emissions, we construct a
composite refinery reflecting a weighted average of current
dry and wet milling production processes (18% dry milling
without corn oil extraction, 71% dry milling with corn oil
extraction, and 11% wet milling). Our weighted industry
average emissions level is 34,518 g CO,e/MMBtu. This value
is higher than in the RIA and reflects some refineries still
using coal as a process fuel.

Tailpipe

Combusting ethanol in motor vehicles emits CO, from the
tailpipe. These emissions are biogenic and are assumed to
be offset by the removal of CO, from the atmosphere dur-
ing new biomass growth. Ethanol combustion also emits
CH,4 and N,O, which remains in the atmosphere. Using the
2009 Motor Vehicle Emission Simulator (MOVES), EPA pro-
jected these emissions at 269g CO,e/MMBtu for CH, and
6119 CO,e/MMBtu for N,O [1, 39].° Summing these values,
the RIA projected tailpipe emissions in 2022 at 8809
CO,e/MMBtu.

Since 2010, new estimates of the CH,; and N,O emissions
associated with combusting ethanol have been published by
the Washington Department of Ecology [40] (187g CO,e/
MMBtu), the State of California GREET model [41] (613 g CO,e/
MMBtu) and GREET 2015 (578 g CO,e/MMBtu). All three values
are less than the value in the RIA. The GREET-affiliated esti-
mates have a small downward bias because they reflect E85,
not pure ethanol as in the RIA. The Washington Department of
Ecology emissions estimate reflects pure ethanol but it has the
largest difference from the RIA value. Given that this is the
smallest emissions category and given our overall reliance on
GREET 2015 EFs, we select 578 g CO,e/MMBtu as the emissions
value for this category.

Projected GHG LCA emissions in 2022 for BAU and
HEHC scenarios

Starting with our current emissions profile of corn ethanol,
we develop two projected emissions profiles for 2022. The
first projection, labeled the BAU scenario, continues through
2022 current trends in: (1) per-hectare corn yields (increasing
by 125.7 kg/ha/year [42]); (2) refineries switching from coal to
natural gas as a process fuel; and (3) increasing fuel efficiency
in heavy-duty diesel trucks. The BAU scenario reflects
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Figure 1. Life-cycle GHG emissions for gasoline and corn ethanol by scenario and source category. RIA: Regulatory Impact Analysis; BAU: Business as Usual
Scenario; HEHC: High Efficiency - High Conservation Scenario; N,O: Nitrous Oxide.

expected improvements in corn ethanol’'s GHG profile in 2022
without refineries acting to reduce emissions. The second pro-
jection, the HEHC scenario, adds to the BAU scenario several
actions refineries could take to reduce the GHG intensity of
corn ethanol. These include contracting with farms to grow
corn using low-emissions practices (reduced tillage, cover
crops, and nutrient management), switching to sustainably
produced biomass as a process fuel, and locating confined
livestock operations close to refineries.'®

Contracting with farmers (reduced tillage, nitrogen
management, and cover crops)
The current and BAU GHG scenarios assume farmers grow
corn for ethanol using conventional tillage. Relative to con-
ventional tillage, reduced tillage systems increase soil carbon
levels, decrease CO, emissions from fuel combustion in field
operations, and decrease N,O emissions from volatilization.
For the HEHC scenario, we estimate increased soil carbon
impact of farmers adopting reduced tillage by matching US
corn hectares by AEZ from the GTAP 2013 simulation with the
corresponding AEZ soil carbon emissions coefficients using
both conventional and reduced tillage. Summed across AEZs,
the emissions impact is —321g CO,e/MMBtu (in Table A2,
compare the domestic LUC values for the ‘current conditions’
and the ‘2022 HEHC' scenarios). To account for the emissions
impact of lower diesel fuel consumption, we decrease the use
of diesel in farm operations from 76.36 L/ha under conven-
tional tillage to 64.98 L/ha for reduced tillage [7]. Finally, the
shift from conventional to reduced tillage reduces the volatil-
ization rate of applied nitrogen. The COMET-Planner report
attributes a 0.173 Mg COe/ha/year reduction in emissions to
reduced tillage relative to conventional tillage. This represents
a 74.4% reduction in N,O emissions from volatilization, which
we incorporate into the HEHC scenario.

If they are not doing so already, farmers can reduce applied
N and the associated N,O emissions by targeting N applications
and using N inhibitors [5]. The COMET-Planner report estimates

these practices can reduce N application rates by 15%. We
make this adjustment to the application rates in the HEHC scen-
ario. There is little publicly available data with which to quantify
the upstream emissions associated with N inhibitors. As a proxy,
we use an application rate of 5.53 kg/ha [43, 44] and manufac-
turing process emissions for the ‘organophosphorus-com-
pound’ from the ecoinvent database [9].

Cover crops protect soils between harvest and planting.
Using cover crops can reduce indirect N,O emissions
related to leaching of N fertilizer. The COMET-Planner
attributes a 1.24 Mg CO,e/ha/year reduction in emissions to
cover crops. This is a 76.8% reduction in N,O emissions
from leaching, which we incorporate in the HEHC scenario.

Comparing the BAU and HEHC scenarios indicates that in
2022, refineries can reduce emissions by 4021 g CO,e/MMBtu
by contracting with farmers to grow corn using reduced till-
age, nitrogen management, and cover crops (sum the differ-
ences in emissions for ‘domestic farm inputs’ and ‘domestic
LUC" between BAU and HEHC scenarios in Table A2).

Fuel production

For the current GHG profile of corn ethanol, we assess
emissions for the fuel production category by constructing
a composite process fuel reflecting a weighted average of
fuels currently used by refineries. For the 2022 projections,
we focus on refineries that use dry milling technologies.
The ethanol industry has been shifting to dry milling due
largely to the high capital costs of wet mill refineries [45].
In 2013, 83% of US corn ethanol refineries used dry mill
technologies. Rosenfeld et al. [5] describe fuel production
emissions for dry mill refineries, with and without corn oil
extraction, and using different process fuels. Our BAU scen-
ario assumes a dry mill refinery with corn oil extraction
using natural gas as its process fuel. Fuel production emis-
sions for this refinery are 31,006 g CO,e/MMBtu. Our HEHC
scenario assumes the same refinery using biomass as its
process fuel. The HEHC scenario also incorporates a higher
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ethanol yield per bushel of corn than in the BAU scenario,
0.44 versus 0.42 L/kg of corn. Fuel production emissions for
the HEHC refinery are 9695 g CO,e/MMBtu.

Fuel and feedstock transportation

For the current GHG profile of corn ethanol, we use default
GREET 2015 transportation and distribution EFs, mode allo-
cations (i.e. barge, truck, or rail), and distance assumptions
to generate transportation-related emissions (see Table 7).
For the 2022 BAU and HEHC projections, we adjust the
default GREET 2015 emissions to reflect a 50% increase in
fuel efficiency for heavy-duty diesel trucks and an increase
in the use of liquefied natural gas (LNG)- and renewable
LNG-powered heavy-duty trucks. The BAU includes a transi-
tion of feedstock, fuel, and corn oil transport to LNG and
DDGS transported by diesel. The HEHC included a full tran-
sition to renewable LNG, increased in part due to renew-
able natural gas from landfills qualifying as an advanced
biofuel. Additionally, the HEHC scenario assumes the loca-
tion of confined animal feeding operations (CAFOs) near
ethanol plants and we eliminate emissions related to trans-
porting DDGS. For the BAU and HEHC scenarios, emissions
related to transporting of fuel and feedstock are projected
at 2641 and 1237 g CO,e/MMBtu, respectively.

Discussion

Figure 1 shows the RIA GHG profile for gasoline, the RIA
projected GHG profile for corn ethanol in 2022, our current
GHG profile for corn ethanol, and our two projected GHG
profiles for corn ethanol in 2022. Appendix Table A2 pro-
vides the emissions values by source category for each
ethanol scenario.

In the RIA, EPA quantified the LCA emissions associated
with its ‘average’ 2005 gasoline (see note 1) at 98,0009
CO,e/MMBtu. For corn ethanol, the RIA projected emissions
in 2022 at 79,441 g CO,e/MMBtu. The ethanol is produced
at a new natural gas-powered dry mill refinery, with a frac-
tionation process in place for extracting corn oil, and pro-
ducing a DGS mix that is 63% dry and 37% wet.
Interestingly, the projected emissions for corn ethanol fall
just short of the 20% reduction required in the RFS2 to
qualify as a renewable fuel. EPA assumed there would be
additional emissions reductions by 2022 related to
increased efficiencies (e.g. in drying DGS). With these effi-
ciency gains, EPA projected the life-cycle GHG emissions of
corn ethanol in 2022 at 21% lower than gasoline.

Our current conditions scenario assesses the life-cycle
emissions of corn ethanol at 59,766 g CO,e/MMBtu. This is
a 39% reduction in GHG emissions relative to gasoline;
almost twice the reduction developed in the RIA. This scen-
ario assumes ethanol plants use a composite process fuel
that reflects today’s mix of natural gas, coal, and other
fuels used by refineries. The 39% reduction is the industry-
wide average GHG reduction for corn ethanol relative to
gasoline. However, most refineries today use natural gas as
a process fuel. In Table A2, replacing the fuel production
emissions in the current conditions scenario with the fuel
production emissions in the BAU scenario indicates that
the GHG profile of corn ethanol produced in these refin-
eries is 42.6% lower than that of gasoline.

Our BAU scenario assumes a continuation through 2022
of current trends in average corn yields per hectare, pro-
cess fuel switching from coal to natural gas, and increasing
fuel efficiency in heavy-duty trucks. Based on these trends,
we project life-cycle GHG emissions for corn ethanol in
2022 at 54,588 g CO,e/MMBtu. This scenario indicates that
even if the ethanol industry does not act to reduce emis-
sions, the GHG profile of corn ethanol will continue to
improve. By 2022, the emissions associated with producing
and combusting corn ethanol will be, on average, 44.3%
lower than the emissions associated with producing and
combusting gasoline.

Our HEHC scenario assumes refineries actively reduce
their GHG profile. Refineries use sustainably produced bio-
mass as the process fuel, contract with farmers to grow
corn using low-emissions practices, and locate CAFOs near
refineries. Projected emissions for corn ethanol in 2022 are
27,852 g CO,e/MMBtu, which is a 71.6% reduction in GHG
emissions relative to gasoline. The main source of emis-
sions reductions is the shift to sustainable biomass as the
process fuel. While it is not likely the ethanol industry as a
whole will undertake these changes, it does highlight the
emissions reductions that are technically possible with cur-
rently available technologies. Given an appropriate incen-
tive, some refineries will likely undertake these changes.
The most likely source of such an incentive are opportuni-
ties to participate in new or expanding markets for low-car-
bon transportation fuels. As noted at the beginning of this
paper, a number of these markets are now taking shape
outside of the United States.

Finally, in the HEHC scenario refineries achieve an emis-
sions reduction of 4021 g CO,e/MMBtu by contracting with
farmers to grow corn using low-emissions technologies and
practices. The practices considered in this scenario are cur-
rently available and in use to some degree. Again, given an
appropriate incentive, refineries could use such contracts
to reduce ethanol’s current GHG profile. Subtracting 4021 g
CO,e/MMBtu from the current emissions levels of a
‘representative’ refinery results in an emissions profile
43.1% lower than that of gasoline. For natural gas-powered
refineries, the emissions reduction would be 46.7%.

Conclusions

This paper assesses the current greenhouse gas profile of
US corn ethanol and two projected emissions profiles for
2022. The starting point is the GHG life-cycle analysis done
by the US Environmental Protection Agency in 2010 for US
corn ethanol as part of its Regulatory Impact Analysis (RIA)
for the Revised Renewable Fuel Standard (RFS2). In the RIA,
EPA projected that in 2022, the life-cycle emissions associ-
ated with ethanol would be 21% lower than those of an
energy-equivalent quantity of gasoline.

We assess each of the 11 emissions categories in the
2010 EPA LCA in light of new data, technical papers,
research studies and other information that have become
available since 2010. Aggregated across the 11 categories,
we find US corn ethanol is developing along an emissions
pathway significantly lower than what EPA projected in
2010. Our analysis indicates the current GHG profile of US
corn ethanol is, on average, 39% lower than that of gas-
oline. For natural gas-powered refineries, this value is



almost 43% lower. Finally, current trends in the ethanol
industry and actions refineries could take to reduce emis-
sions offer opportunities to lower the GHG profile of corn
ethanol to between 47.0 and 70.0% relative to gasoline.

Our analysis is timely because many countries (e.g.

Colombia, Japan, Brazil, Canada and the European Union)
are now developing or revising their renewable energy pol-
icies. These policies typically require biofuel substitutes for
gasoline to reduce GHG emissions by more than 21%. Our
results could help position US corn ethanol to compete in
these new and growing markets.

Notes

1.

10.

The US gasoline supply consists of gasolines imported from
many foreign regions and gasolines refined domestically from
petroleum extracted from numerous domestic and foreign
regions. The gasoline assessed in the RIA is a composite product
constructed to represent the ‘average’ gasoline consumed in the
United States in 2005 [1, section 2.5].

To help readers quickly compare the methods of the RIA and our
study, Appendix Table A1 identifies key differences in data,
models, emission factors and other information used in the two
studies by emissions source category.

To make our results familiar to a wider set of people in other
disciplines, Appendix Table A2 presents emissions by source
category for the RIA and our three scenarios in both g CO,e/
MMBtu and g CO,e/MJ.

The regional breakdown, in acres, is in Rosenfeld et al. [5; table
2-6, p. 18].

ARMS is an annual survey that collects data on the financial
condition, production practices, and resource use for US farms.
Each ARMS samples about 5000 fields and 30,000 farms that are
representative of that year's surveyed commodities.

For example, in Appalachia, 95.2% of acres apply nitrogen (N)
and the average application rate is 173.01 kg/ha. Multiplying the
adoption rate by the application rate gives an effective N
application rate across the region of 164.70 kg/ha.

Our approach allows us to clearly distinguish between new acres
brought into corn production due to increases in ethanol
production, acres leaving corn production due to increases in
supply of distiller grains and solubles, and the GHG impacts
related to each set of acres (i.e. changes in emissions related to
changes in farm input use and changes in soil carbon).
Additionally, our approach allows us to account for the increase
in average corn yields per hectare since 2010.

This table is reproduced in Rosenfeld et al. [5, p. 82].

MOVES estimates emissions for mobile sources covering a broad
range of pollutants, and allows multiple-scale analysis.

The term ‘sustainably produced biomass’ abstracts from several
emissions-related issues that could accompany a large-scale
increase in the use of biomass as a process fuel by ethanol
refineries. For example, LUC and farm input emissions could
change if large areas of land are shifted into energy crop
production. The nature and GHG intensity of feedstock
production geared to supply large quantities of biomass to the
ethanol industry would likely vary by region, and even by
refinery location. While an analysis is beyond the scope of this
paper, we acknowledge that our HEHC scenario is likely a
relatively low-emissions case.
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Summary of Key Data Sources and Models Used in the Regulatory Impact Analysis (RIA) Life Cycle Analysis and the Current

Source category

RIA [1]

Current GHG profile

General - Global warming
potentials (GWPs) .

Domestic farm inputs and .

Second Assessment Report (1996)
Methane: 21
e Nitrous oxide: 310

Fertilizer application rates and fuel

Fourth Assessment Report (2007)
e Methane: 25
e Nitrous oxide: 298

o Fertilizer application rates: [6]

fertilizer Nitrous Oxide (N,0)

Consumption: Forestry and Agricultural Sectoral
Optimization Model (FASOM version 2010)
Fertilizer and fuel production Emission

factors: The Greenhouse Gas,

Regulated Emissions, and

Energy Use in Transportation

Model (GREET) version 2009

Fertilizer use emission factors:

Daily Century (DAYCENT) Model (version 2010)

Domestic land use e Acres: FASOM (version 2010)

o Emission factors: DAYCENT Model (version 2010)
Domestic rice methane o Acres: FASOM (version 2010)

o Emission factors: [19]

Domestic livestock

International livestock

International land-use change

Change in livestock populations: FASOM (version
2010)
Emission factors: [19]

Populations: Food and Agriculture Policy Research
Institute-Center for Agricultural and Rural
Development (FAPRI-CARD) (version 2010)
Emission Factors: [10]

Acres: FAPRI-CARD (version 2010)
Emission factors: Winrock International (2009)

Fuel consumption: [7]

Fertilizer and fuel production emission factors:
GREET (version) 2015

Fertilizer use emission factors:[10]

Animal feed co-product credit: GREET (ver-
sion 2015)

Acres: [12]
Emission rates: Century and Cole Models
(version 2015)

Acres: same as [1]
Emission factors: [21]

Change in livestock populations: same as [1]
except poultry

Livestock conventional feed emission Factors: [21]
Emission reductions from Distillers Grains with
Solubles as feed: GREET (version 2015)

Populations: same as [1]
Emission factors: [10] except for Canada
(2016) with a country-specific update

Acres: [12]; in two scenarios, acres adjusted
with data in [17]

Emission factors: Winrock International (2009),
Woods Hole (2010) and California Air Resources
Board (CARB) Agricultural - Ecological Zones
(AEZ) (2015)

(continued)
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http://www.card.iastate.edu/publications/dbs/pdffiles/14sr109.pdf
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http://www.arb.ca.gov/regact/2015/lcfs2015/lcfs15appi.pdf
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https://doi.org/10.1186/s13068-017-0877-y
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http://www.ers.usda.gov/Data/China/NationalResults.aspx?DataType=6&DataItem=160&StrDatatype=Agricultural�inputs&ReportType=0
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http://www.irri.org
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http://www.ecy.wa.gov/programs/air/permit_register/ghg/GHG_transp.html
http://www.ecy.wa.gov/programs/air/permit_register/ghg/GHG_transp.html
http://www.arb.ca.gov/fuels/lcfs/ca-greet/ca-greet.htm
http://www.arb.ca.gov/fuels/lcfs/ca-greet/ca-greet.htm
http://www.lookchem.com/Nitrapyrin/

Appendix Table A1. Continued.
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Source category

RIA [1]

Current GHG profile

International farm inputs and
fertilizer N,O

International rice methane

Fuel and feedstock transport

Fuel production

Tailpipe

Acres and production: FAPRI-CARD (version 2010)
Fertilizer application rates: [30] and [31, version
2009]

Fuel use: [34]

Fertilizer and fuel production emission factors:
GREET (version 2009)

Fertilizer use emission factors: Methodology
similar to domestic

Acres: FAPRI-CARD (2010)
Emission factors: [10]

Transport distances: GREET (version 2009)
Emission factors: GREET (version 2009)

Process energy:

GREET (version 2009)

Emission factors: GREET (version 2009)

Emissions: [39]

Acres and production: [12]

Fertilizer application rates: [31, version 2015]

Fuel use: same as [1]

Fertilizer and fuel production emission Factors:

GREET (version 2015)

Fertilizer use emission factors: [10]

Acres: same as [1]
Emission factors: same as [1]

Transport distances: GREET (version 2015)

Emission factors: GREET (version

2015)

Process energy: GREET (version 2015)

Emission factors: GREET (version

Emissions: GREET (version 2015)

2015)

Appendix Table A2. Emissions by scenario and category.

Estimated Greenhouse Gas (GHG) emissions (in grams carbon dioxide equivalent per million British thermal units)

Emissions category RIA (2010) Current 2022 BAU 2022 HEHC
Domestic farm inputs 10,313 9065 8190 4490
Domestic Land Use Change —4000 —2038 —2038 —2359
Domestic rice methane —209 —1013 —1013 —1013
Domestic livestock —3746 —2463 —2463 —2463
International Land Use Change 31,790 9094 9094 9094
International farm inputs 6601 2217 2217 2217
International rice methane 2089 2482 2482 2482
International livestock 3458 3894 3894 3894
Fuel and feedstock transport 4265 3432 2641 1237
Fuel production 28,000 34,518 31,006 9695
Tailpipe 880 578 578 578
Total 79,441 59,766 54,588 27,852
Estimated GHG emissions (in grams carbon dioxide equivalent per Mega Joule)
Domestic farm inputs 9.77 8.59 7.76 4.26
Domestic Land Use Change —3.79 —-1.93 —-1.93 —2.24
Domestic rice methane —0.20 —0.96 —0.96 —0.96
Domestic livestock —3.55 —-233 —-233 —-233
International Land Use Change 30.13 8.62 8.62 8.62
International farm inputs 6.26 2.10 2.10 2.10
International rice methane 1.98 2.35 2.35 2.35
International livestock 3.28 3.69 3.69 3.69
Fuel and feedstock transport 4.04 3.25 2.50 117
Fuel production 26.54 32.72 29.39 9.19
Tailpipe 0.83 0.55 0.55 0.55
Total 75.30 56.65 51.74 26.40
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